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Reduced-form modeling approaches are an increasingly popular way to rapidly estimate air quality and
human health impacts related to changes in air pollutant emissions. These approaches reduce
computation time by making simplifying assumptions about pollutant source characteristics, transport
and chemistry. Two reduced form tools used by the Environmental Protection Agency in recent
assessments are source apportionment-based benefit per ton (SA BPT) and source apportionment-based
air quality surfaces (SABAQS). In this work, we apply these two reduced form tools to predict changes in
ambient summer-season ozone, ambient annual PM,s component species and monetized health
benefits for multiple sector-specific emission control scenarios: on-road mobile, electricity generating
units (EGUs), cement kilns, petroleum refineries, and pulp and paper facilities. We then compare results
against photochemical grid and standard health model-based estimates. We additionally compare
monetized PM, s health benefits to values derived from three reduced form tools available in the
literature: the Intervention Model for Air Pollution (INMAP), Air Pollution Emission Experiments and Policy
Analysis (APEEP) version 2 (AP2) and Estimating Air pollution Social Impact Using Regression (EASIUR).
Ozone and PM, s changes derived from SABAQS for EGU scenarios were well-correlated with values
obtained from photochemical modeling simulations with spatial correlation coefficients between 0.64
and 0.89 for ozone and between 0.75 and 0.94 for PM, 5. SABAQS ambient ozone and PM,; 5 bias when
compared to photochemical modeling predictions varied by emissions scenario: SABAQS PM, s changes
were overpredicted by up to 46% in one scenario and underpredicted by up to 19% in another scenario;
SABAQS seasonal ozone changes were overpredicted by 34% to 83%. All tools predicted total PM; 5
benefits within a factor of 2 of the full-form predictions consistent with intercomparisons of reduced
form tools available in the literature. As reduced form tools evolve, it is important to continue periodic
comparison with comprehensive models to identify systematic biases in estimating air pollution impacts
and resulting monetized health benefits.

Reduced form modeling tools are being increasingly applied in the literature to analyze air quality impacts from policy scenarios as they are quicker and easier to
implement than photochemical air quality models. Quantitative evaluation of these tools is necessary so that the scientific community can understand their
limitations and uncertainties. We present a new reduced form modeling tool, the Source Apportionment-Based Air Quality Surfaces (SABAQS) method. SABAQS
is one of the first reduced form models in the literature to include ozone in addition to PM, ;s impacts. We compare SABAQS results against full-form modeling,
EPA's latest source apportionment-based benefit per ton (SA BPT) values and 3 other publicly available reduced form tools for multiple emissions control

scenarios.

Introduction
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formed through chemical reactions of precursor pollutants
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compounds (VOCs) in the presence of sunlight and can also be
transported thousands of miles downwind.* Thus, elevated O;
levels in the US are generally found in locations with abundant
precursor emissions and conducive meteorology but levels
across the country can be impacted by emissions that occur in
upwind regions. PM, 5 can be directly emitted into the atmo-
sphere or produced when emissions of precursors such as
VOCs, NOx and sulfur dioxide (SO,) form PM, ;s through
chemical and physical processes.* The chemical constituents of
PM, 5 vary across the contiguous US regionally and by season
due to seasonal and regional differences in emissions sources,
atmospheric chemistry and meteorological conditions.>”

The chemical and physical processes in the atmosphere that
convert precursor gases to O; and PM, s are complex.* Modeling
systems that estimate the change in ambient O; and PM, 5 due
to changing emissions can vary greatly in terms of complexity.
The most complex modeling systems are photochemical
transport models that use a 3-dimensional Eulerian grid
structure to represent emissions, transport, chemical conver-
sion, and deposition.®? Two photochemical models commonly
used to support scientific and regulatory O; and PM, 5 assess-
ments are the Community Multiscale Air Quality (CMAQ)
model® (https://www.epa.gov/cmaq) and Comprehensive Air
Quality Model with  Extensions (CAMx;  https:/
www.camx.com). Both models have been shown to
appropriately replicate the amount and relative proportions of
O; and chemically speciated PM,s; when compared to
ambient measurements.'®* Further, these tools have been
used to assess Oz and PM, 5 impacts from single sources
and complex emission control programs including power
plant trading programs'® and motor-vehicle technology
implementation."”

Since photochemical transport models have a detailed
representation of chemistry and physical processes related to
formation and transport of O; and particles, their application
requires computing resources and technical expertise which
may not be readily available to some who are interested in
understanding how ambient O; and PM, s may be influenced by
a change in emissions. As a result, reduced form models have
been developed to allow for quick and easy-to-use assessments
of summer season O; and annual average PM, s impacts from
emission changes and subsequent monetized health impacts.
Such models used recently in literature to estimate monetized
health benefits of PM, 5 include the Intervention Model for Air
Pollution (InMAP),*® Air Pollution Emission Experiments and
Policy Analysis (APEEP) versions 2 (AP2)," and Estimating Air
pollution Social Impact Using Regression (EASIUR).* In addi-
tion, the EPA has developed estimates of average dollar
marginal health benefits for both O; and PM, s per ton of
abated emissions from different emissions source categories,
known as source apportionment-based benefit-per-ton (SA
BPT).>*?* In this paper we describe a method for creating source
apportionment-based air quality surfaces (SABAQS) that has
been applied in benefits calculations for recent EPA rules
addressing the power sector.**® While the SA BPT and SABAQS
methods both provide air quality benefits estimates derived
from source apportionment tagging in photochemical
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modeling simulations, SABAQS produces spatially resolved air
quality impacts while SA BPT produces only a national-level
dollar value endpoint for emissions from each sector.

While many assessments include monetized health impacts
estimated by one or more of these tools,'®*”** few compare
predicted health impacts from emission control scenarios
against photochemical model estimates.>*® A comparison of
health impacts of specific facilities in Texas between reduced
form models (APEEP and EASIUR) and full-form photochemical
modeling paired with the Environmental Benefits Mapping and
Analysis Program - Community Edition (BenMAP-CE)*
demonstrated that the error that is introduced when repre-
senting how air quality responds to changes in different
precursor emissions propagates through to the estimated
health benefits.** The differences in air quality predictions can
affect the size and distribution of the benefits attributed to air
quality policies.

In this paper we start by comparing O; and PM, 5 air quality
changes estimated by SABAQS with changes derived from
photochemical grid modeling simulations. We then compare
O; and PM, s monetized health damages derived from SABAQS
to those derived from full-form models. Finally, we compare
SABAQS results to O; and PM, s monetized health damages
estimated by the SA BPT, InMAP, AP2 and EASIUR. These
comparisons were made using different emission control
scenarios covering five economic sectors that range in
geographic and technologic implementation complexity. The
emissions scenarios developed for this assessment provide
a framework for future comparisons and could be used to
evaluate changes to future iterations of the tools included in
this assessment. As reduced form tools evolve, it is important to
continue periodic comparison with comprehensive models to
identify systematic biases in estimating air pollution and
resulting monetized health benefits.

Methods

Each emissions control scenario included a base year, a future
year reference case and a future year control case (see Tables 1
and S-17). The base-year represents emissions and meteorology
from a year in the recent past for which ambient measurements
are available for both meteorological parameters and air
pollutant concentrations. Future year reference cases represent
emissions that are expected to occur in the future assuming
population growth, changes in energy demand and imple-
mentation of current on-the-books regulations but without the
impacts of the control scenario evaluated. The future year
control scenario (Table S-1) represents a hypothetical or real
policy that would result in emissions changes in one of 5
economic sectors: Electric Generating Units (EGUs) commonly
referred to as power plants, mobile sources, cement, pulp &
paper, or refineries.

Annual average PM,s and summer season (May-Sep)
average maximum daily 8 h (MDAS8) O; were estimated for 12
km sized grid cells by CMAQ, CAMx and/or SABAQS for the
seven future year reference and control scenarios. Each of these
air quality surfaces were then input to BenMAP-CE to estimate
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Table1 Key elements of emissions scenarios including base and future years and reductions between the future reference case and the future

control case by pollutant

Scenario previously

Base year (meteorology Future year (base case

Annual total future-year
emission reductions
(thousand tons)

documented in Baker et al.**> & emissions) and sensitivity emissions) NO, SO, PM,; VOC NH;3
Mobile (tier 3) Yes 2007 2030 348 13 9 181 —
EGU (clean power plan proposal) Yes 2011 2025 424 427 63 10 3
EGU emissions sensitivity A No 2011 2023 457 701 41 -5 -7
EGU emissions sensitivity B No 2016 2023/2026 70 107 6 —0.1 —0.4
Pulp & paper Yes 2011 2025 35 36 7 @— —
Cement kilns Yes 2011 2025 97 55 13 - -
Refineries Yes 2011 2025 35 16 4 - -

county-specific monetized health impacts. Air quality and
health impacts for each scenario are determined as the differ-
ence between conditions modeled for the relevant projected
future year control and future year reference scenarios. We note
that we use both SABAQS and the full-form models to estimate
changes in air pollution from hypothetical emissions pertur-
bations. Given the hypothetical nature of these emissions
perturbations it is not possible to validate models against
measured resulting air pollution changes. While we use CAMx
and CMAQ, which include complex representations of physical
and chemical atmospheric processes, to ground-truth SABAQS
estimates, we acknowledge that CMAQ and CAMXx themselves
have uncertainties.

Additionally, emissions changes associated with each
scenario were used to quantify monetized health impacts
associated with PM, 5 changes and O; changes (where available)
using INMAP, AP2, EASIUR and SA BPT. Inputs and outputs for
these scenarios are summarized in Table 1 and inputs for 5 of
these scenarios are also documented elsewhere.**** Because the
SABAQS method has currently only been developed for power
sector emissions, the SABAQS estimates were only created for
EGU control scenarios.

Description for full-form models

CMAQ and CAMx are both Eulerian photochemical grid models.
These models ingest inputs of gridded initial conditions, hourly
boundary conditions, gridded hourly meteorological fields and
gridded hourly emissions of SO,, NO,, ammonia (NH3), speci-
ated VOCs, speciated PM,s among other pollutants. The
meteorological inputs were generated using the Weather
Research and Forecasting (WRF) model.** Initial and boundary
conditions were extracted from photochemical model simula-
tions applied for larger domains and coarser grid scales.*® The
photochemical models themselves include modules to simulate
emissions, atmospheric chemistry, atmospheric transport,
particle dynamics and deposition and produce gridded hourly
outputs of pollutant (e.g., O; and speciated PM, 5) concentra-
tions and deposition.

Gridded seasonal or annual average concentrations gener-
ated by the photochemical models were used as an input to the

1308 | Environ. Sci.. Atmos., 2023, 3, 1306-1318

BenMAP-CE program® for estimating associated health
damages. BenMAP-CE applies epidemiologically derived
concentration-response functions to estimate and value
changes in the incidence of health impacts attributable to air
quality, accounting for affected populations and baseline
mortality and morbidity incidence within those populations,
using the concentration-response function parameterized in

eqn (1):

BAx

Ay = yo(e”™* — 1)pop 1)

Yo is the baseline incidence rate for the health endpoint
assessed; pop is the population affected by the change in air
quality; Ax is the change in concentration for a specific air
pollutant; and @ is the effect coefficient linking exposure and
health outcome, which is drawn from relevant epidemiological
studies. Here, a single mortality concentration-response func-
tion®> was used to estimate the number of premature deaths
from annual mean changes in PM, 5 with a § coefficient® of
0.007045846, and a second mortality concentration-response
function®” was used to estimate the number of premature
deaths from summertime mean MDAS O; with a 3 coefficient**
of 0.007696104. The population and baseline incidence
parameters were held constant across each scenario. Elemental
carbon was used as a surrogate for all components of primary
PM, 5 and used to represent the full amount of primary PM, 5
emissions. This was done to remove potential influence of
secondarily formed organic aerosol on health damages reported
for emission control scenarios modeled with photochemical
grid models. Health impacts related to elemental carbon were
linearly scaled proportionately to the total amount of primary
PM, 5 emissions to elemental carbon emissions. The estimated
number and economic value of air pollution-attributable deaths
and illnesses are subject to sources of uncertainty that we were
unable to characterize quantitatively. Key sources of uncertainty
include: the projected changes in the number and distribution
of individuals exposed to air pollution in the future; the extent
to which modeled air quality changes represent a reasonable
surrogate for population exposure; the baseline rates of death
and disease experienced by these populations; and, future

© 2023 The Author(s). Published by the Royal Society of Chemistry
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changes in income, which in turn affect individual willingness
to pay to reduce the risk of premature death.

Description for reduced-form models

Developers of multiple reduced form tools provide county level
marginal damages for annual PM, 5 and provided each as part
of an interactive internet site (https://www.CACES.us/data).
Tools included as part of this repository include InMAP,*
AP2," and EASIUR.?® EPA's SA BPT tool estimates benefits at
the national scale expected to occur from reducing emissions
from specific sectors. This tool accounts for the spatial nature
of specific sectors and how emissions from those sectors
interact with meteorology and chemistry in those locations.
The SA BPT approach quantifies marginal PM, 5>"*** and
0, *** health damages relative to a fixed amount of precursor
emissions.

To develop SA BPT values, source apportionment was used to
track the contribution of primarily emitted and precursors to O
and PM, ;5. The source apportionment capabilities within the
CAMx model allows the user to tag sources or groups of sources
by type and location.* The O3 source apportionment technology
(OSAT) within CAMx tracks the impacts of NO, and VOC emis-
sions through the model physical and chemical processes and
outputs hourly gridded O; contributions from each user-
defined emissions tag for each precursor pollutant. Similarly,
the particulate matter source apportionment technology (PSAT)
within CAMXx tracks the impacts of SO,, NO,, and directly
emitted PM (i.e., primary PM) to PM species including sulfate,
nitrate, organic carbon (OC), elemental carbon (EC), and crustal
material. Gridded surfaces of sector-wide O3 and PM, 5 contri-
butions were then applied to estimate total monetized health
damages associated with each sector using BenMAP-CE. Finally,
the marginal SA BPT health damages were calculated by
dividing the sector-wide health damages by the sector-wide
precursor emissions. These SA BPT values can then be used to
provide estimates of monetized health effects for policy
scenarios matching the spatial and temporal scale of the
underlying emissions and health damages.* In this assessment
we focus on the most recent SA BPT values for onroad sources
(e.g- light-duty gasoline cars and motorcycles, heavy-duty diesel
vehicles etc.),>* industrial sectors*® and EGUs.* Elemental
carbon was used as a surrogate for all components of primary
PM, s and BPT values derived from elemental carbon were
applied to total primary PM, 5 emissions.

The method for creating SABAQS builds more control into
the SA BPT methodology. Both tools leverage results from the
source-apportionment instrumented capabilities within the
CAMx model. However, while the SA BPT methodology only
provides the user with marginal dollar per ton estimates based
on total benefits calculated for each sector at a national or
regional level, the SABAQS method allows the user to create
intermediate air quality surfaces associated with a specified
emissions scenario. To accomplish this, SABAQS makes the
simplifying assumption that ozone and PM contributions can
be linearly scaled based on emissions levels. OSAT separately
tracks ozone formed under NO, and VOC limited conditions

© 2023 The Author(s). Published by the Royal Society of Chemistry
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(O3N and 03V) so each can be scaled to the relevant precursor.
For PM, 5, SABAQS makes the assumption that ammonium
sulfate PM, s can be scaled to SO, emissions, ammonium
nitrate PM, 5 can be scaled to NO,. emissions, and that primary
OC, EC, and crustal material can all be scaled to total primary
PM, ;s emissions. SABAQS does not include capabilities for
tracking PM, s impacts from ammonia emissions.

The SABAQS method starts with “fused” surfaces of observed
and modeled concentrations for ozone and PM, s that are
derived first by bias-correcting the base-year model predictions
for each pollutant using enhanced Voronoi Neighbor Averaging
(eVNA)**** and then projecting the fused surfaces into the
future by multiplying the base-year eVNA surface by gridded
modeled relative response factors between base and future
concentrations using EPA's Software for the Modeled Attain-
ment Test - Community Edition (SMAT-CE).*** The source
apportionment contributions for each tag are then applied to
adjust this future-year fused surface based on emissions
changes associated with each tag using eqn (2):

T
Cg‘l S1,1+ ) [2)

=1 Cg>Tnt

C,; = eVNA, x (

where:

e C,, is the estimated fused model-observation concentra-
tion in grid-cell, “g”, for emissions scenario, “i”. For ozone, Cg;
is calculated as the summer season average of MDAS (ppb)
while for PM, 5, C,; is the annual average concentration and is
separately calculated for each PM, s component species (i.e.,
sulfate, nitrate, EC, etc.) (ug m);

e eVNA, is the eVNA future year fused model obs concen-
tration in grid-cell “g” in ppb and pg m * for summer season
ozone and annual average PM species concentrations
respectively;

® Cy 1ot is the total modeled concentration in grid-cell “g”
from all sources in the source apportionment modeling in ppb
and pg m > for summer season ozone and annual average PM
species concentrations respectively;

e C,, is the modeled source apportionment contribution in
grid-cell, “g”, from source apportionment tag, “¢”, in ppb and pg
m for summer season ozone and annual average PM species
concentrations respectively;

e S;; is the EGU scaling ratio for emissions tag, “t” and
scenario “i”. For each pollutant, S,; is calculated as the ratio of
emissions associated with the tag, “t”, in emissions scenario,
“1”, to emissions associated with tag, “¢”, in the modeled source
apportionment case (i.e. 2023en and 2026fj cases from Table S-
1t1). Emissions used to calculate S;; for each pollutant are
provided in Table 2. S, is set to 1 for any source tags whose
emissions are unchanged included the tag for from boundary
condition contribution (i.e., ozone or PM, 5 transported into the
modeling domain).

For ozone the Cy ; values for O3N and O3V are added together
to create a gridded surface of total summer-season MDA8 ozone
associated with emissions scenario, i. For PM, s, the C,; values
for sulfate, nitrate, primary OC, EC and crustal material are
added to unaltered bulk secondary organic aerosol (SOA)

Environ. Sci.. Atmos., 2023, 3, 1306-1318 | 1309
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Table 2 Description of emissions used for scaling ratio calculation for
each pollutant

Pollutant Emissions used to calculate S, ; (tons)
O3N Ozone season (May-Sep) NO,

o3v Ozone season (May-Sep) VOC

Sulfate Annual SO,

Nitrate Annual NO,

Primary OC, EC
and crustal PM

Annual primary PM, 5

concentrations along with particulate ammonium and partic-
ulate water mass that are calculated based on degree of
neutralization of nitrate in the base year and on nitrate and
sulfate concentrations calculated for emissions scenario 7 using
standard equations in SMAT-CE.*>*¢

Emissions scenarios

Five of the seven emissions scenarios used to support this
assessment are described in more detail elsewhere.*> Annual
total nationally aggregated emission changes by pollutant for
each scenario relative to the projected future year reference
scenario are provided in Table 1.

One scenario from the Clean Power Plan Proposal (CPPP)"
was used to represent a complex change in EGU emissions due
to a trading program and changes to electricity dispatch. This
scenario used the base year of 2011 and a future projection
reference year of 2025.

Two additional EGU scenarios were created in order to
further test the SABAQS method using the available EGU source
tagging. Both EGU scenarios used a future reference year of
2023 projected from the 2016v2 emissions modeling platform.**
In the first EGU “control” scenario, emissions perturbations in
the sector were achieved by using an alternate older projection
of 2023 emissions based on the 2011v3 emissions modeling
platform® as the reference case and the newer 2023 EGU
projection as the control case. This scenario will be referred to
as EGU emissions sensitivity A. In the second ECU “control”
scenario, emissions perturbations in the sector were achieved
by swapping in projections of the EGU emissions out to 2026
reflecting impacts expected to occur in the sector over a 3 year
period. This scenario will be referred to as EGU emissions
sensitivity B.

Scenarios for four additional economic sectors were
included to provide complex test cases with spatially and
temporally heterogenous changes in multiple pollutants for the
InMAP, AP2, EASIUR and SA BPT tools. The Tier 3 Motor Vehicle
Emission and Fuel Standards Final Rule (Tier 3)"” was selected
as a mobile scenario. This scenario used a base year of 2007 and
a future projection reference year of 2030. The cement kiln,
refinery, and pulp & paper sector scenarios all used the base and
future projection reference year from the CPPP cases. The
control scenarios for these 3 sectors were generic hypothetical
changes which applied across-the-board emissions
reductions.**

1310 | Environ. Sci.: Atmos., 2023, 3, 1306-1318
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Estimating air quality and monetized health benefits

Photochemical grid models were used to predict the change in
annual average PM, s and seasonal average MDAS8 ozone for
multiple complex emissions scenarios for EGUs, industrial
sectors, and the onroad mobile sector. The base-year air quality
surfaces for the photochemical model simulations of these
emission control scenarios were modulated to match ambient
data. Then, changes in air quality were derived from future year
projections of emissions and separate simulations for alterna-
tive future year projected emissions that represented a change
due to a specific emission control scenario. The difference
between these annual photochemical model simulations
represents the air quality impacts of the emission control
scenario (Table S-11). More details about photochemical model
configuration and application are provided in the ESI Section.

SABAQS was applied for the EGU emissions scenarios using
state level changes in precursor emissions from EGU sources to
estimate annual average PM,; and seasonal average MDAS
ozone for the future year reference and control scenarios. In
other words, impacts to ozone and PM,s; were separately
tracked from EGU emissions in each state. Two different sets of
state level EGU source apportionment were used with SABAQS.
One was based on 2011 meteorology and projected 2023 EGU
emissions (“2023en”) and the other 2016 meteorology and
projected 2026 EGU emissions (“2026fj”). More specifics about
the SABAQS configuration and application are available in the
ESI Section.t

BenMAP-CE was used to estimate monetized human health
benefits for each air quality scenario simulated by the photo-
chemical models and SABAQS. The difference between pre-
dicted future year reference and future year control simulations
was used to represent the impact of the emissions control
scenario.

National monetized health benefits for SA BPT were calcu-
lated by multiplying the aggregated emissions changes (Table 1)
by sector and pollutant-specific BPT values. Health benefits
were estimated using sector-specific BPT values for EGUs,>
industrial sectors,”> and mobile emissions.** PM, s health
benefits based on changes in emissions of NO,, SO,, and
primary PM, ;s were calculated for all sectors. Health benefits
based on NO, and VOC emissions for seasonal ozone were
estimated only for industrial and EGU scenarios because ozone
SA BPT values have not been developed for mobile sources.

We additionally predict health impacts of annual average
PM, 5 concentrations from three publicly reduced form models:
InMAP,'® EASIUR,***® and AP2 (ref. 19) to provide context for SA
BPT and SABAQS performance. Each of these tools were applied
with county level precursor emissions changes applied to
county specific marginal damages provided by the model
developers. The data were obtained from the Center for Air,
Climate, and Energy Solutions (https://www.caces.us/data) in
february 2022 and reflect the version of those tools at that
time. Health effects based on InMAP, EASIUR, and AP2 were
selected for the American Cancer Society C-R function using
a VSL of $11.3 M based on a 2025 future year (EGU and indus-
trial sector scenarios) and of $11.6 M based on a 2030 future

© 2023 The Author(s). Published by the Royal Society of Chemistry
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year (mobile scenario) and a 2019 currency year.”” The ground
level values were used for the Tier 3 scenario and elevated stack
values were used for the other scenarios.

Results & discussion
SABAQS air quality predictions

We start by comparing SABAQS predictions to full-form CAMx
predictions of ozone and speciated PM, 5 impacts for the CPPP
case. For this comparison SABAQS used the 2023en source
apportionment modeling dataset. Table 3 provides mean
change in air quality concentrations averaged across all 12 km
land-based contiguous US grid cells in CAMx and SABAQS. In
addition, mean bias (MB), normalized mean bias (NMB), and
spatial correlation () are calculated as described in ref. 11. Here
a negative NMB indicates that SABAQS predicts a larger impact
from CPPP than CAMx and a positive NMB indicates that
SABAQS predicts a smaller impact from CPP than CAMx. For
CAMx and SABAQS, primary PM is calculated as the sum of
elemental carbon and crustal components. All statistics are
calculated based on grid cells covering contiguous US land
locations (i.e. excluding grid cells outsides of the US or over
purely water grid cells).

First, we note that CAMx predicted domain-wide impacts of
the CPPP scenario of around 0.3 ppb for seasonal MDA8 ozone
and approximately 0.1 pg m™>® for annual average PM, .
Normalized mean bias for SABAQS is quite low for nitrate (7.0%)
and primary PM, 5 (9.2%). SABAQS NMB is higher for sulfate
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and ozone at —49.4% and —79.3% indicating that SABAQS
shows a larger magnitude of impact from CPPP on these two
pollutants than CAMx. As can be seen in the spatial correlation
numbers between 0.55 and 0.97, SABAQS replicates the spatial
patterns of ozone and PM, s quite well. Spatial patterns pre-
dicted by CAMx and SABAQS and the differences between those
surfaces are shown in Fig. 1-5 for each pollutant. Spatial
patterns for secondary pollutants that form through chemical
reactions in the atmosphere (i.e., ozone, sulfate, and nitrate) are
all above 0.85. Fig. 1 shows that ozone impacts from both CAMx
and SABAQS are most pronounced in areas of the southern US,
specifically emanating from modeled power plant locations in
Texas, Arkansas, Mississippi, Alabama, Georgia and North
Carolina. Fig. 2 shows that both CAMx and SABAQS predict
nitrate reductions in the midwestern US and in the San Joaquin
Valley of California, two areas of the country where ambient
nitrate concentrations tend to be large. SABAQS somewhat
underpredicts the magnitude impact of CPPP on nitrate
compared to CAMX, especially in California. While we do not
explicitly assess causes of SABAQS biases in this analysis, it is
possible that some of the nitrate biases in San Joaquin Valley
may result from the fact that SABAQS method does not include
nonlinear chemistry impacts from ammonia emissions. Despite
this limitation of scaling nitrate impacts linearly to NO, emis-
sions, national nitrate biases are relatively small. Fig. 4 shows
that sulfate impacts from both CAMx and SABAQS also appear
to be regional, covering much of the southern US from Texas
eastward. The spatial correlation for primary PM is somewhat

Table 3 Comparison of ambient pollutant changes predicted by SABAQS and CAMx for the EGU control scenarios

Mean impact: SABAQS

Mean impact: CAMx

Pollutant Scenario (ug m ™ or ppb) (ug m~ or ppb) MB? (ug m~> or ppb)  NMB* (%) r
Primary PM°® CPPP: 2023en —0.010 —0.009 —0.001 —-9.2% 0.54
CPPP: 2026f] —0.005 —0.009 0.004 43.7% 0.43
EGU emissions sensitivity A —0.005 —0.027 0.0219 80.9% 0.75
EGU emissions sensitivity B —0.001 —0.001 8.8 x 107° 12.3% 0.72
Nitrate CPPP: 2023en —0.006 —0.007 0.0005 7.0% 0.94
CPPP: 2026f] —0.007 —0.007 0.0001 1.5% 0.77
EGU emissions sensitivity A —0.006 —0.007 0.0006 9.2% 0.84
EGU emissions sensitivity B —0.001 —0.002 —0.0006 —45% 0.78
Sulfate CPPP: 2023en —0.099 —0.067 —0.0329 —49.4% 0.97
CPPP: 2026f] —0.101 —0.067 —0.0347 —52.0 0.88
EGU emissions sensitivity A —0.139 —0.121 —0.0185 —15.3% 0.96
EGU emissions sensitivity B —0.024 —0.022 —0.0019 —8.4% 0.96
Total PM° CPPP: 2023en —-0.119 —0.0866 —0.0323 —37.3% 0.94
CPPP: 2026fj —0.127 —0.0866 —0.0399 —46.0% 0.86
EGU emissions sensitivity A —0.152 —0.159 0.0075 4.7% 0.94
EGU emissions sensitivity B —0.028 —0.023 —0.0046 —19.6% 0.75
Ozone CPPP: 2023en —0.557 —0.311 —0.246 —79.3% 0.88
CPPP: 2026f] —0.570 —-0.311 —0.259 —83.2% 0.81
EGU emissions sensitivity A —0.502 —0.374 —0.128 —34.3% 0.89
EGU emissions sensitivity B —0.068 —0.047 —0.021 —44.6% 0.64

¢ For negative impacts (i.e., decreases in ozone or PM, 5 in the emissions scenario) negative bias and normalized mean bias values indicate that
SABAQS predicts a larger magnitude impact than CAMx and positive bias and normalized mean bias values indicates that SABAQS predicts
a smaller magnitude impact than CAMx. b Primary PM defined as elemental carbon + crustal material for the purpose of this comparison.
“Total PM includes ammonium nitrate, ammonium sulfate, elemental carbon, crustal material and organic carbon. Organic carbon
comparisons not made between SABAQS and CAMx because SABAQS organic carbon impacts only account for changes in primary organic
carbon while CAMx organic carbon impacts account for changes in both primary and secondary organic carbon.
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Fig.1 Comparison of CAMx and 2023en-based SABAQS estimates of CPPP impacts on May—Sep MDAS8 ozone. CAMx estimates shown on the
left, SABAQS estimates shown in the middle and the difference between the two surfaces shown on the right with purple colors indicating
a larger impact from SABAQS and green colors indicating a larger impact from CAMx.

lower due to the very local nature of primary PM impacts to the
sources. Therefore, in states that are large in area and may
include multiple sources throughout the state, full-form models
can capture impacts of spatially heterogeneous primary PM
emissions changes within the state while SABAQS is con-
strained to the spatial resolution of the underlying source
apportionment tags (in this case state or multistate groupings).
This is evident in Fig. 3 which shows CAMx and SABAQS esti-
mates of primary PM impacts are concentrated in the same
states (AZ, TX, AL, MS, GA and FL). However, within states like
AZ, TX and GA it is evident that some individual EGU plant
locations show larger impacts in CAMx while others show larger
impacts in SABAQS. Presumably, a SABAQS simulation that
tracked emissions from these EGU plants in separate tags would
be able to better capture this within-state spatial impacts from
primary PM. A sensitivity analysis that applied SABAQS using
the 2026fj source apportionment dataset derived from a 2016
base year somewhat degraded agreement with the 2011-based
CAMx modeling (Table 3 and Fig. S1-S51). This analysis does
not provide sufficient information to determine how much
differing underlying meteorology versus emissions years
between SABAQS and CAMx impacted these results.

Nitrate PM2.5 Impacts: CAMx

-0.10 -0.05 0.00

ug/m®

0.05 0.10 -0.10 -0.05

Nitrate PM2.5 Impacts: SABAQS

0.00
ng/m®

Results from EGU emissions sensitivity A and EGU emis-
sions sensitivity B are provided in Table 3 and Fig. S6-S15.7 In
contrast to the CPPP case, SABAQS produces sulfate and ozone
surfaces with much lower magnitude of bias in the two EGU
emissions sensitivities. Sulfate NMB was 15.3% and 8.4% for
EGU emissions sensitivity A and EGU emissions sensitivity B
respectively. Ozone NMB was 34.3% and 44.6% for EGU emis-
sions sensitivity A and EGU emissions sensitivity B respectively.
This shows that the overstatement of sulfate and O; response
for the CPPP scenario is specific to that case and that the
SABAQS methodology can match CAMx modeled sulfate and
ozone surfaces more closely depending on the particular
emissions scenario being estimated. For nitrate and primary
PM, 5 the two EGU emissions sensitivities have mixed results,
with EGU emissions sensitivity A having relatively small nitrate
bias (NMB = —9.2%) and relatively large primary PM, 5 bias
(NMB = —80.9%) and EGU emissions sensitivity B having
relatively large nitrate bias (NMB = —45.0%) and relatively
small primary PM, 5 bias (NMB = —12.3%).

The four EGU scenarios provided here show that the SABAQS
method reasonably captures the spatial patterns of changing
ozone and PM, s components in response to EGU emissions

Nitrate PM2.5 Impacts: SABAQS vs CAMx bias

0.05 0.10 -0.10 -0.05 0.00 0.05 0.10

ng/m’

Fig.2 Comparison of CAMx and 2023en-based SABAQS estimates of CPPP impacts on annual average PM, s nitrate. CAMx estimates shown on
the left, SABAQS estimates shown in the middle and the difference between the two surfaces shown on the right with purple colors indicating
a larger impact from SABAQS and green colors indicating a larger impact from CAMx.
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Fig.3 Comparison of CAMx and 2023en-based SABAQS estimates of CPPP impacts on annual average primary PM, s (EC and crustal material).
CAMx estimates shown on the left, SABAQS estimates shown in the middle and the difference between the two surfaces shown on the right with
purple colors indicating a larger impact from SABAQS and green colors indicating a larger impact from CAMx.

Sulfate PM2.5 Impacts: CAMx
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Fig.4 Comparison of CAMx and 2023en-based SABAQS estimates of CPPP impacts on annual average PM; 5 sulfate. CAMx estimates shown on
the left, SABAQS estimates shown in the middle and the difference between the two surfaces shown on the right with purple colors indicating
a larger impact from SABAQS and green colors indicating a larger impact from CAMx.

changes and provides a measure of the uncertainty of predic-
tions for total annual PM, 5 ranging from a 19.6% underesti-
mate of the response to a 46% overestimate of the response and
predictions of seasonal ozone ranging from a 34.3% to an 83.2%
overestimate of the response.

Monetized health benefit comparison

The estimated economic value of air quality changes provides
a common metric that may be used to compare the performance
of each tool. Table 4 provides a comparison of ozone and
speciated PM, 5 health impacts derived from the SABAQS air
quality surfaces in comparison to those derived from the full-
form modeling tools using brute force emissions changes
(Table S-17). For the CPPP scenario, full-form PM, 5 results were
derived from two separate photochemical models: CMAQ and
CAMXx. The total PM, 5 health benefits from the two full-form
models were within 20% of each other with very similar
predictions of nitrate and sulfate contributions but somewhat
diverging predictions of primary PM, s contributions. The
underlying level of uncertainty in full-form models provides
important context when comparing against reduced form
estimates.

© 2023 The Author(s). Published by the Royal Society of Chemistry

The comparison between monetized health benefits derived
from SABAQS air quality to that derived from full-form air
quality mirrors the performance of the underlying air quality
predictions. SABAQS health benefits associated with PM, 5
formed from NO, emissions closely matches those derived from
the full form models for all EGU scenarios. PM, s health impacts
from SO, emissions are substantially overpredicted by SABAQS
for the CPPP scenario but match the full-form model derived
estimates more closely for EGU sensitivity A and EGU sensitivity
B. In contrast the health impacts associated with direct PM
emissions for SABAQS fell between the estimates from the two
full-from models for the CPP scenario but were underpredicted
for EGU sensitivity A and EGU sensitivity B. Overall, SABAQ total
PM, 5 benefits for the CPPP scenarios were overpredicted by
44% or 70% depending on which full-form model was used and
were overpredicted by 29% and 6% for EGU sensitivity A and
EGU sensitivity B respectively. As described previously, SABAQS
overpredicted the ozone air quality response to the EGU
scenarios compared to the full-form models. When translated
to benefits, SABAQS predicted higher ozone-related health
benefits compared to the full-form approach by about 60% in
EGU sensitivity A and B and by about a factor of 2 for the CPP
proposal scenario.
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Fig. 5 Comparison of CAMx and 2023en-based SABAQS estimates of CPPP impacts on annual average total PM; 5 (nitrate plus primary PM, 5
plus sulfate). CAMx estimates shown on the left, SABAQS estimates shown in the middle and the difference between the two surfaces shown on
the right with purple colors indicating a larger impact from SABAQS and green colors indicating a larger impact from CAMx.

Table4 SABAQS-based monetized ozone and PM, 5 health impacts (2019S billion) for each EGU emissions scenario. PM, 5 impacts are provided
for speciated components of PM; 5 (nitrate from NO,, sulfate from SO,, and primary PM; s) and the sum of speciated components (total PM; s).

Benefits derived from full-form modeling simulations are shown in bold

PM; 5

Scenario Model Ozone NO, SO, Primary PM, 5 Total PM, 5

CPPP CMAQ/BenMAP — 1.7 154 5.7 22.8
CAMx/BenMAP 9.1 14 15.6 2.3 19.3
SABAQS/BenMAP“ 18.3 1.7 27.5 3.7 32.9

EGU sensitivity A CAMx/BenMAP 11.4 1.7 32.3 4.2 41.0
SABAQS/BenMAP 18.2 1.8 39.5 1.2 43.3

EGU sensitivity B CAMXx/BenMAP 1.2 0.3 5.0 0.2 5.2
SABAQS/BenMAP 1.9 0.5 5.9 0.1 6.7

“ SABAQS results based on the CPPP: 2023en.

Next, we provide context for the SABAQS health impacts
comparison by providing similar comparisons for the other four
reduced form tools: SA BPT, InMAP, AP2, and EASIUR. Table S-
27 and Fig. 6 show the monetized health impacts associated
with PM, 5 estimated by both photochemical grid models and
reduced form tools for multiple emission control scenarios. For
the EGU scenarios, the SABAQS estimates and the SA BPT esti-
mates are based on the same underlying source apportionment
modeling so differences between the two estimates are largely
driven by the fact that SA BPT estimates are calculated by
multiplying national emissions changes with a national SA BPT
value for the EGU sector while the SABAQS estimates in this
work account for state-level relationships between emissions
and air quality impacts. Fidelity to the full-form predictions
varied across tools, scenarios and PM, 5 precursors. All tools
predicted total PM, 5 benefits within a factor of 2 of the full-
form predictions consistent with intercomparison of reduced
form tools presented elsewhere.**** Many of the tools per-
formed substantially better than a factor of 2 for some or all of
the emissions scenarios. For instance, AP2, EASIUR and
SABAQS all predicted total PM, 5 benefits within +50% of the
full-form predictions for all scenarios, while INMAP and SA BPT
predicted total PM, s benefits within £50% for 6 out of 7

1314 | Environ. Sci.. Atmos., 2023, 3, 1306-1318

scenarios and 4 out of 7 scenarios respectively. Performance for
individual precursors was more variable. All reduced form tools
predicted larger PM, s nitrate impacts than the full-form
approach but some tended to have less severe overpredictions
(AP2 and SABAQS) while others tended to have more severe
overpredictions (INMAP and EASIUR). SA BPT nitrate perfor-
mance varied by emissions scenario. For PM, 5 sulfate the
direction of the bias in reduced form tool predictions varied by
scenario for INMAP, AP2, EASIUR and SA BPT which all had
underpredictions for some scenarios and overpredictions for
others. In contrast, SABAQS tended to overpredict PM, 5 sulfate
benefits. For primary PM, 5 the direction of the bias in reduced
form tool predictions also varied by scenario for INMAP, EAS-
IUR and SA BPT. In contrast, SABAQS tended to underpredict
primary PM2.5 benefits.

Monetized health impacts related to changes in O; were only
available for the full-form approach, SA BPT (EGUs and indus-
trial sector scenarios) and SABAQS (EGU scenarios only). These
comparisons are shown in Table S-31 and Fig. 7. The somewhat
worse performance of SA BPT for EGU scenario ozone benefits
compared to SABAQS is likely due to the national nature of the
SA BPT calculation compared to the more spatially refined state-
level information incorporated into the SABAQS calculations.

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ea00092c

Open Access Article. Published on 27 2023. Downloaded on 01/11/25 09:57:57.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Environmental Science: Atmospheres
O CMAQ/BenMAP
= = ] B CAMx/BenMAP
S & _ s ®7 O InMAP
s w o o AP2
el el
~ = O EASIUR
& & o O SABPT
& 2 & o 4 —H B SABAQS/BenMAP
] o — NOx
e g H SO2
Q. Q Q 2
E o | E | B Direct PM
s °© £ = ]
s i T < -
e || £ — u L
v - ') -
T— N > N N
s « S H =
o o [\
© el —— -
S & N — —
T 2 o —
C =
o (=} —
= = — IEI
o - o -
CPPP EGU Sensitivity A EGU Sensitivity B Tier 3 Cement Refinery Pulp & Paper

Fig. 6 Monetized PM, 5 health impacts (2019$ billion) for each emissions scenario. Impacts are provided for speciated components of PM, 5
(@ammonium nitrate from NO,, ammonium sulfate from SO,, and directly emitted PM, s). SA BPT values for the Tier 3 scenario are based on the
smallest eastern US BPT value (for Light duty class vehicles) from Table 2 of ref. 39.

=y

Re)

©

= o

e} N
&

D

—

&

= o _|
» —

2

(&)

©

3

— o ]
_C by o

=

[

[0

T

° -
bt Te}

N

=

[0)

{ ==t

o

= o -

CPPP EGU Sensitivity A

= [ []

EGU Sensitivity B

CMAQ/BenMAP
CAMx/BenMAP

SA BPT
SABAQS/BenMAPa

BEOEDO

= [J I

Cement Refinery Pulp & Paper

Fig. 7 Monetized ozone health impacts (2019$ billion) for each emissions scenario.

Predicted ozone-related health impacts from SA BPT were
similar for the pulp and paper and cement kiln sector scenarios
but different by more than a factor of 2 for the refinery sector
scenario. The difference for the refinery sector was related to
seasonal average MDAS8 O; decreases in the Los Angeles area
predicted by the photochemical grid model due to Oz destruc-
tion reactions from NO, outpacing O; formation reactions from
NO, compared to the benefit per ton approach that is based on
source apportionment which was not designed to take this type
of nonlinear O; response to emissions precursors into account.
These processes were less impactful for the pulp and paper and
cement kiln sectors because these facilities are usually located
outside large urban areas where O; formation is usually limited
by NO, emissions rather than urban core areas that can be VOC
limited.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Conclusions

Moneteized benefits derived from SABAQS and from SA BPT
have a common set of limitations. First, the air quality changes
and resulting health benefits are tied to the underlying repre-
sentation of sources in the modeling. Therefore, these reduced
form methodologies will more closely replicate full-form
modeling estimates when the underlying representation of
emissions sources are similar. Conversely, if the emissions
inventories feeding the SABAQS or SA BPT values are outdated,
then any changes in the spatial allocation of emissions sources
and their proximity to population centers will impact the ability
of these tools to predict benefits from emissions control
scenarios. It is therefore important to periodically update the
emissions used to derive both the SABAQS input dataset and the
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SA BPT values as the magnitude and location of emissions
sources evolve. Next, the set-up of the source apportionment
tags is an important consideration when applying SABAQS or SA
BPT to estimate impacts of any particular emissions scenario. In
this work, the SABAQS EGU emissions scenarios relied on state-
level tagging of EGU sources. SABAQS and SA BPT results that
used tags with more or less specificity (in terms of source
characteristics or spatial scales) would likely result in impacts
that more or less closely resemble the estimates from a full-form
model. Therefore, in applying these techniques it is important
to design source apportionment simulations that appropriately
group emissions sources for the scenario being evaluated.
Anyone applying SABAQS to assess air quality benefits of local,
regional, or national air quality policies needs to carefully
design source apportionment tags to appropriately replicate the
types of policies being assessed. Additionally, these methods
rely on modeling that simulates air quality response under
meteorological conditions that occurred in a single year. Since
meteorology impacts how pollutants are dispersed as well as the
chemical and physical processes that impact secondary
pollutant formation, the methods rely on an annual simulation
to adequately capture the typical range of meteorological
conditions that influence air pollutant formation and transport.
The meteorology in any particular year may differ from the
meteorology originally modeled in the apportionment
modeling, thus adding uncertainty to the generalization of the
impacts estimated with these methods. A sensitivity analysis
conducted in this work found that national SABAQS results were
fairly robust even when using a different meteorological year
from the underlying full-form modeling. Finally, both meth-
odologies treat the relationship between emissions and air
quality impacts as linear and additive. This approximation is
a simplification of many complex atmospheric processes but
does a reasonable job of creating a first-order approximation of
air quality changes and associated benefits as shown by the
results in this comparison.

Here we have compared air quality and health estimates
derived from various reduced form tools to that of full-form
photochemical air quality models, to determine how compa-
rable results are and which tools may be best used for regulatory
analyses that do not permit full-form analyses. Specifically, we
evaluated ambient summer-season ozone, ambient annual
PM, 5 and its components, and monetized health benefit esti-
mates from several reduced form tools for a variety of sector-
specific emission control scenarios. Performance of reduced-
form models varied by tool, pollutant, and emissions
scenario. The SA BPT tool is generally suitable for use in
applications examining impacts of emissions reductions that
are similar in magnitude and geographic scope to those used to
derive the SA BPT relationships. We caution that SA BPT cannot
capture ozone disbenefits in locations that are highly VOC
limited so should not be used to replicate ozone impacts of NO,
emissions changes for sources predominantly located in loca-
tions known to be VOC limited. The SABAQS method was able to
replicate spatial patterns of ozone and PM impacts from EGU
emissions scenarios with correlation coefficients ranging from
0.64-0.89 for ozone and 0.75-0.94 for total PM,s. SABAQS
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overpredicted ozone health benefits but more closely captured
PM, ; health benefits from the EGU scenarios. We conclude that
SABAQS is a reliable reduced form tool to use in EGU or other
similar stationary source regulatory analyses in which full-form
analyses are not feasible. Overall, both SA BPT and SABAQS
predict monetized health impacts similarly to other reduced
form models available in the literature.
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