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Engineering the electronic excited state manifolds of organic molecules can give rise to various functional
outcomes, including ambient triplet harvesting, that has received prodigious attention in the recent past.
Herein, we introduce a modular, non-covalent approach to bias the entire excited state landscape of an
organic molecule using tunable ‘through-space charge-transfer’ interactions with appropriate donors.
Although charge-transfer (CT) donor—acceptor complexes have been extensively explored as functional
and supramolecular motifs in the realm of soft organic materials, they could not imprint their potentiality
in the field of luminescent materials, and it still remains as a challenge. Thus, in the present study, we
investigate the modulation of the excited state emission characteristics of a simple pyromellitic diimide
derivative on complexation with appropriate donor molecules of varying electronic characteristics to
demonstrate the selective harvesting of emission from its locally excited (LE) and CT singlet and triplet
states. Remarkably, co-crystallization of the pyromellitic diimide with heavy-atom substituted and
electron-rich aromatic donors leads to an unprecedented ambient CT phosphorescence with impressive
efficiency and notable lifetime. Further, gradual minimizing of the electron-donating strength of the
donors from 1,4-diiodo-2,3,5,6-tetramethylbenzene (or 1,2-diiodo-3,4,5,6-tetramethylbenzene) to 1,2-
diiodo-4,5-dimethylbenzene and 1-bromo-4-iodobenzene modulates the source of ambient
phosphorescence emission from the *CT excited state to LE excited state. Through comprehensive
spectroscopic, theoretical studies, and single-crystal analyses, we elucidate the unparalleled role of
intermolecular donor—acceptor interactions to toggle between the emissive excited states and stabilize
the triplet excitons. We envisage that the present study will be able to provide new and innovative
dimensions to the existing molecular designs employed for triplet harvesting.
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excited state dynamics with pertinent introduction of elegant
molecular designs. Generally, the triplet excitons are harvested

Introduction

Biasing the landscape of electronic excited state manifolds of
organic molecular systems has paramount importance in
controlling various photophysical processes and resultant
functions. The necessity to harvest triplet excitons owing to
their practical implications in organic lighting devices, sensing,
and bioimaging has triggered interest in manipulating the
singlet and triplet excited states by innovative molecular
designs." Thus, the recent past has witnessed a renaissance in
the field of ambient triplet harvesting by effectively tuning the
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via two major photophysical processes; phosphorescence®* and
thermally activated delayed fluorescence (TADF).® Often,
charge-transfer (CT) states play an important role in these
ambient triplet harvesting processes, where these states can
assist the exciton transfer by acting as an intermediate state or
excitons can be directly harvested from the CT states.®> However,
the molecular architecture with intramolecular charge transfer
(ICT) characteristics is employed with fine modulation of
optical properties for multiple applications. This includes
enhanced circularly polarized luminescence of organic mate-
rials with high luminescence dissymmetry factor (|guml)
endowed by increased electric transition dipole moment and
amplified spontaneous emission of organic lasers by sup-
pressing the ICT process.® In the present contribution, we
propose a modular approach to realize efficient triplet har-
vesting, by toggling between the locally excited (LE) and CT
states of an organic molecule by through-space CT interactions,
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Fig. 1 Schematic of the modular donor—acceptor co-assembly strategy to tune the excited state manifold of pyromellitic diimide phosphor.
Molecular structure of PmDI (acceptor) and its tunable emission with different aromatic donors; locally excited fluorescence (*LE) in THF
solution, charge-transfer (*CT) fluorescence in electron rich-aromatic solvents (p-xylene, mesitylene and TMB), locally excited phosphorescence
(3LE) in 1-bromo-4-iodobenzene (D), 1, 4-dibromobenzene (Ds) and charge-transfer phosphorescence (*CT) in 1,4-diiodo-2,3,5,6-tetrame-
thylbenzene (D), 1,2-diiodo-3,4,5,6-tetramethylbenzene (D,). Simplified Jablonski diagram showing various emission processes possible in the
excited state (photographs of 'LE, 1CT emission obtained by 340 nm and 370 nm Xe lamp excitation and *LE and *CT phosphorescent co-crystals

under 365 nm UV lamp).

in non-covalent co-crystal scaffolds of donor and acceptor
molecules (Fig. 1).

Supramolecular networks of CT co-crystals, with the co-facial
organization of donor and acceptor chromophores,” are an
important class of organic functional materials and have been
extensively explored in organic ferroelectrics® and charge-
transport.” Further, the reversible dynamic nature of the CT
interactions with tunable association constant, has been used
for the design of various supramolecular materials, such as
molecular motors,' supramolecular polymers* and fol-
damers." Despite the functional and supramolecular diversities
offered by CT complexes, their optical properties are relatively
less explored as they often form non-fluorescent CT complexes
or charge-separated states.”® Even though emissive CT states
(*CT) are reported, phosphorescence from triplet CT (*CT) states
is rarely encountered.* Although, attempts have been made to
achieve phosphorescence from *CT states under cryogenic
conditions from CT complexes,* to the best of our knowledge,
there are no reports on phosphorescence from *CT states based
on organic ambient phosphors known to date.

Herein we introduce a modular donor-acceptor co-crystal
approach to realize the unprecedented ambient CT phospho-
rescence. In this co-crystal approach, we envision that the
excited state manifold can be modulated by the structural
engineering of either donor and acceptor molecular compo-
nents, and thereby selectively harnessing emission from LE or
CT triplet excited states. This can be realized by the simulta-
neous incorporation of heavy atoms into the individual
components, and/or tuning the acceptor or donor strength. The
former results in populating the triplet state by enhancing spin-
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orbit coupling (SOC), and thereby inter-system crossing (ISC)
efficiency by external or internal heavy atom effect,* while the
latter prompts the excitons to preferentially channel into the CT
states."” Further, we envisage that the co-crystal organization
stabilized by various intermolecular interactions, would harvest
the triplets by minimizing the common triplet quenching
vibrational pathways.'***

Earlier, we have unveiled that the anomalous exciplex like
emission emanating from the arylene diimides in the presence
of aromatic solvents have clear CT characteristics, resulting
from the ground-state CT complexation between electron-rich
aromatic solvents and electron-deficient arylene diimide
cores.” Thus, to toggle between different excited states by the
CT strategy, we have chosen a donor-acceptor intermolecular
architecture with arylene diimides based on pyromellitic dii-
mide as acceptor and various electron rich heavy atom
substituted benzene as donor components. Apart from the
countless opportunities offered by arylene diimides to tune
their electronic properties by structural modification,'® the
added advantage bestowed by pyromellitic diimides due to their
facile synthetic route and high triplet yields,"”” urged us to
continue exploring their potentials as the acceptor in the CT
system. The simplified Jablonski diagram (Fig. 1) explains the
possible electronic transitions realized by judiciously choosing
the donor component to interact with pyromellitic diimide
(PmDI). In presence of non-aromatic solvents like THF, PmDI
exhibits its characteristic highly blue-shifted LE fluorescence
('LE). This can be further pushed into CT fluorescence with the
help of electron rich aromatic solvents with low ionization
potential that can form emissive CT complex with PmDI, as

© 2022 The Author(s). Published by the Royal Society of Chemistry
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observed previously with naphthalene diimide derivatives.'
Remarkably, the integration of heavy atom into the donor
counterpart induces ambient locally-excited (*LE) phosphores-
cence of PmDI via external heavy atom effect. More interest-
ingly, the coalescence of both the above concepts, ie.,
introducing donor with strong electron-donating capacity with
heavy atoms can trigger unique CT phosphorescence under
ambient conditions, from the triplet *CT states, as pictorially
represented in the diagram (Fig. 1). Therefore, we illustrate
tunable ambient phosphorescence from a simple arylene dii-
mide derivative by selectively tuning the excited state dynamics
of the phosphor using a modular non-covalent organic co-
crystal approach.

Results and discussions

Pyromellitic diimide (PmDI) derivative without any heavy-atom
substitution was chosen as the acceptor component for the
present study (Fig. 2a). Initially, the CT complexation of PmDI
with various aromatic solvents was investigated by detailed
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spectroscopic studies. In THF, PmDI showed an absorption
maximum of 320 nm and a structured emission with vibronic
maxima at 420 nm, 440 nm and 460 nm, characteristic of local
excited ("LE) fluorescence of PmDI monomer (Fig. 2b, ¢ and e).
Further investigation was carried out to unravel the differences
in the spectroscopic properties of PmDI in the presence of
various aromatic solvents which is crucial for the scope of the
present investigation (Fig. 2c). As the electron donating capacity
of the aromatic solvents was increased from benzene to 1,2,3,4-
tetramethylbenzene (TMB), a new red-shifted absorption band
appeared, with the maximum red-shift observed for TMB, which
indicates the ground-state electronic interaction with the
solvent molecules (Fig. 2b). The corresponding emission
spectra upon exciting at the w-7* band (Aex. = 320 nm) of PmDI
in the same set of solvents exhibited dual emission bands,
where the higher energy band corresponds to the 'LE state of
PmDI, whereas the new broad red-shifted emission can be
correlated to the 'CT emission (Fig. 2c and e). This is further
confirmed by the emission spectra obtained upon the direct
excitation of the lower energy band in the absorption spectra,
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Fig. 2 Solution state CT fluorescence of PmDI in electron rich aromatic solvents: (a) molecular structure of PmDI (acceptor) and different non-
aromatic and aromatic solvents with varying electronic character. (b) Normalized absorption spectra of PmDI in various solvents, which shows
the presence of ground state CT band in electron rich aromatic donors. (c) Normalized steady-state emission spectra showing *LE emission in
THF, benzene and broad, red-shifted CT emission band in electron-rich aromatic solvents (dexc = 340 nm). (d) Normalized emission spectra
showing CT emission in electron-rich aromatic solvents upon selective excitation at the CT band (Aexc = 420 nm). (e) Normalized emission
spectra showing distinct ILE emission in THF (Aexc = 340 nm) and 1CT emission in TMB (Aexc = 420 nm). (f) Fluorescence lifetime decay profiles of
ILE emission in THF (exe = 340 NM, Acotiected = 420 nm) and *CT emission in TMB (Aexe = 442 NM, Acotected = 500 nm), IRF is the instrument
response function. (g) Plot of emission maximum versus the ionization potential of various aromatic solvents under study, which shows that
emission maximum becomes red-shifted upon decreasing the ionization potential of the solvent.
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which showed structureless emission with a gradual red-shifted
maxima, with the increase in the donor strength of solvent,
while moving from toluene to tetramethylbenzene (Fig. 2d).
This is more evident from the plot of emission maximum vs.
ionization potential where a nearly linear trend (from toluene to
TMB) was observed confirming the CT nature of the interaction
between PmDI and various aromatic solvents (Fig. 2g).*®
Furthermore, the time-resolved lifetime decay experiments
showed an average lifetime of 0.86 ns in THF (Aexe = 340 nm,
Acollected = 420 nm) corresponding to the 'LE state of PmDI, and
2.56 ns in TMB (Aexe = 442 nM, Acgpectea = 500 nm), corre-
sponding to the newly formed CT state (Fig. 2f and Table S17).
The increased lifetime in presence of TMB and other electron
rich aromatic solvents, suggests the stabilization of the complex
in electron donating solvents (Fig. 2f, S1 and Table S11) which
reiterated the CT nature of the red-shifted emission.

Inspired by the emissive singlet CT state formed between
electron-rich aromatic solvents and PmDI, we made an attempt
to realize phosphorescence from the *CT state, by a donor-

View Article Online
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acceptor co-crystallization approach via modulating the donor
characteristics, and thereby the intermolecular interactions. We
have chosen the positional isomers based on electron-rich
aromatic donor TMB with heavy atom substitution, ie., 1,4-
diiodo-2,3,5,6-tetramethylbenzene (D,) and 1,2-diiodo-3,4,5,6-
tetramethylbenzene (D,), to facilitate ISC and hence to stabi-
lize the *CT state (Fig. 3a).

Inspired by the emissive singlet CT state formed between
electron-rich aromatic solvents and PmDI, we made an attempt
to realize phosphorescence from the *CT state, by a donor-
acceptor co-crystallization approach via modulating the donor
characteristics, and thereby the intermolecular interactions. We
have chosen the positional isomers based on electron-rich
aromatic donor TMB with heavy atom substitution, ie., 1,4-
diiodo-2,3,5,6-tetramethylbenzene (D,) and 1,2-diiodo-3,4,5,6-
tetramethylbenzene (D,), to facilitate ISC and hence to stabi-
lize the *CT state (Fig. 3a).

Preliminary studies of D, with PmDI in solution state under
cryogenic conditions exhibited a highly red-shifted band in the
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Fig.3 >CT phosphorescence studies of A+D; and A+D, co-crystals: (a) molecular structures for A+D; and A+D, donor—acceptor complexes. (b)
Normalized excitation spectra of individual donors (D, and D3, Amonitored = 420 M), acceptor (A, Amonitored = 560 NM) and donor-acceptor co-
crystal (A+D; and A+D3, Amonitoreda = 560 nm), which shows the red-shifted band for donor—acceptor co-crystal compared to individual
components suggesting the formation of CT complex. (c) Steady-state emission spectra of the acceptor (A) and donor—acceptor co-crystal
(A+D; and A+D5), which shows the weakly emissive nature of bare acceptor and highly emissive nature of donor—acceptor pair (Aeyc = 340 nm).
(d) Normalized delayed emission spectra of acceptor (A) doped in PMMA matrix at 20 K (1 wt% with respect to PMMA) and donor—acceptor co-
crystal at room temperature, which shows a red-shift in the emission maximum of donor-acceptor pair compared to the 3LE emission of
acceptor hinting towards the 3CT emission (Aexc = 340 nm, delay time = 1 ms for A and 50 ps for A+D; and A+D,). (e) Lifetime decay profile for
A+D; and A+D, co-crystal upon excitation at 340 nm and selective excitation at CT band (Aexc = 430 NM, Acoliected = 560 Nm). Temperature-
dependent (f) steady-state emission spectra and (g) lifetime decay profile (Acoected = 560 Nm) of A+D; showing *CT phosphorescence nature of
the emission upon selective excitation at the CT band (Aexc = 430 nm).
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excitation spectra, suggesting the CT complexation (Fig. S2 and
Table S27). Therefore, 1 : 1 co-crystals of donor : acceptor (A+D,
and A+D,); where donor used is D; or D,, and acceptor PmDI
were grown, resulting in beautiful greenish-yellow crystals.
Subsequent photophysical studies of the co-crystals exhibited
an evident, red-shifted band in the excitation spectra monitored
at 560 nm, incongruous to individual donor and acceptor
spectral characteristics (Fig. 3b). The steady-state emission
spectra when excited at 340 nm, showed an intense greenish-
yellow emission with a maximum centred at 520 nm and
528 nm for A+D, and A+D,, respectively, whereas respective
individual donors (@ of D, and D, is 0.72% and 0.65%,
respectively) and acceptor (P = 1.1%) were weakly emissive
(Fig. 3c). Notably, the gated emission spectra (delay time = 50
us) of the co-crystals and emission lifetimes (Acopiectea = 560 Nm)
of 22.02 ps and 12.24 ps for A+D; and A+D,, respectively,
collected under 340 nm excitation, pointed towards the delayed
nature of the emission that emanates from them (Fig. 3e, S3 and
Table S31). Intensified emission and prolonged lifetime in
vacuum compared to ambient conditions confirmed the role
played by triplet state in the emission of these co-crystals
(Fig. S4 and Table S3f). The nature of the delayed emission
was further validated by temperature dependent studies (Fig. S5
and Table S41). The increased emission intensity and lifetime
upon decreasing the temperature confirms the phosphorescent
nature of the emission (Fig. S51). In order to get further insights
into the nature of the emission, we further investigated photo-
physical characteristics of the individual components (Fig. S67).
Individual donors D, and D, in the crystal state were weakly
emissive while the acceptor PmDI in PMMA matrix at 20 K and
in THF at 77 K under cryogenic conditions showed a maximum
around 500 nm, corresponding to the phosphorescence emis-
sion from LE triplet state of (*LE) of PmDI (Fig. S7, S8, Tables S5
and S67). Remarkably, the delayed emission of the co-crystals is
further red-shifted (A+D; with Apaximum @t 520 nm and A+D,
with Apaximum @t 528 nm) and broad, which ruled out the
possibility of the co-crystal emission to be originating from the

|---7, 3.86 A
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acceptor *LE emission and steered us to further investigate the
role of CT states on the long-lived emission (Fig. 3d and S91).
The key role played by CT process was investigated by
selectively exciting at the CT band of the co-crystals at 430 nm
(Fig. 3d and e). Similar emission spectral profiles and lifetime
decay profiles observed upon selective excitation with that of the
LE excitation at 340 nm, clearly substantiated the origin of long-
lived emission to be the CT states formed by the donor-acceptor
interactions (Fig. 3d and e). In addition, a closer examination of
the excitation spectra showed a significant contribution from
the CT band (shaded portion) which is much more red-shifted
than the individual LE states of both D and A (Fig. 3b and
S31). Further, the temperature dependent studies carried out by
the selective excitation at the CT band also displayed an
increase in the emission intensity at lower temperature point-
ing towards phosphorescent nature of the CT emission (Fig. 3f,
g, 510, Table S4t). Upon amalgamating both the observations, it
can be inferred that the phosphorescence emission of these co-
crystals are indeed originated from the *CT state of the donor-
acceptor complex, and to the best of our knowledge this is the
first report on *CT phosphorescence from organic co-crystal at
room-temperature. The time-resolved emission and excitation
experiments did not show any changes in the spectral maxima
at various time intervals and wholly matched with the delayed
emission spectra suggesting the exclusive contribution of the
3CT state in the phosphorescence emission (Fig. S117). It is
noteworthy to mention that the proposed CT co-crystal
approach is very efficient to exclusively realize *CT emission
clearing out contributions from *LE and 'LE states. Over and
above to this, CT co-crystals exhibit exceptionally high phos-
phorescence quantum yields compared to the individual
components and were measured to be 46% and 43% in air, and
71% and 65% under vacuum, for A+D; and A+D,, respectively.
Further, we have attempted to characterize the molecular
arrangement of donor and acceptor in the CT co-crystal by
single-crystal X-ray diffraction (XRD) analysis (Fig. S121). We
have observed that the donor and acceptor are arranged in

c)

; [

] J% Hole Ajﬁ?ﬁ

-

\,
Tﬁ
0,9

(a) Single-crystal X-ray diffraction data of A+D, co-crystal: donor—acceptor arrangement of A+D, pair, driven by various halogen bonding

and weak 7t-- -t interactions, such as (a) |---7 (marked with red lines), 7c-- -7t (marked with black lines) in a stack and (b) |---C=0 (marked with green
lines) in the same plane. (c) Theoretical calculations of A+D;: natural transition orbitals (NTOs) of A+Dy pair for first excited singlet (S;) and triplet
state (Ty), calculated using TD-CAM-B3LYP level in conjunction with 6-31+g(d) basis set for C, N, O, H and LANL2DZ basis set showing CT

character.
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a slipped stacked manner where the donor is partially stacked
on top of the acceptor (Fig. 4a and S137). For example, in the
case of A+D,, a weak m-7 interaction (4.281 A), is present
between donor and acceptor (Fig. 4a and S137). Interestingly,
the two-iodine atoms of the donor (D,) face the w-surface of
PmDI with a distance of 3.849 A suggesting the presence of
strong halogen-T interaction (Fig. 4a and S137). Thus, the co-
facial organization of the donor and acceptor components
mediated by halogen-m and weak m-m interactions could be
responsible for the intermolecular CT interaction observed in
these co-crystals (Fig. 4a and S137). The interdigitated nature of
PmDI alkyl chains of adjacent D-A stacks suggests that hydro-
phobic interactions between alkyl chains also play a crucial role
in the non-covalent organization of the co-crystals (Fig. S137).
Interestingly, we have observed another type of halogen
bonding interaction between iodine and carbonyl with
a distance of 3.161 A within the same layer of donor-acceptor
pair (Fig. 4b). We envisage that, these halogen bonding inter-
actions in the co-crystal increase the SOC and ISC rate signifi-
cantly and along with the CT interaction facilitate the efficient
harvesting of triplet excitons from the *CT state (Fig. 4a, b, $13,
S14 and Table S77).

The presence of through-space CT interaction between D,
(donor) and PmDI (acceptor) via their co-facial organization is
further validated from the computed natural transition orbitals
(NTOs) of the first excited singlet state (S;) where the hole is
located on the D, and electron on the m-surface of the acceptor
(Fig. 4c, S14-S16%). The significant oscillator strength (f =
0.0023) with spatially separated highest occupied molecular
orbitals (HOMO) and lowest unoccupied molecular orbitals
(LUMO) leads to strong CT transition in the ground state
(Fig. 4c, S14 and S157). Interestingly, HOMO and LUMO of first
excited triplet state (T;) were also located over donor and
acceptor, respectively like the S; state suggesting the CT nature
of T, state of A+D, (Fig. 4c and S177). The calculated spin-orbit
coupling matrix element (SOCME) between S, and T, is
34.212 cm™ ', which is significant enough to populate the triplet
excitons to the *CT state and thus helped to realize phospho-
rescence emission from a more thermodynamically stable state
(Table S87). Although the experimental energy gap between *LE
from °CT is not very high, the presence of heavy atoms
decreases the vibronic coupling, and thus the repopulation of
LE from the *CT state is not favourable. Further the significant
energy difference (AEgy = ~110 meV) between 'CT (Amaximum =
500 nm) and *CT (Amaximum = 528 nm) prevents the reverse
intersystem crossing (RISC) to harvest triplets through the TADF
pathway (Fig. 3d), thus leading to the exclusive *CT pathway for
the triplet harvesting.

We have further realized that the CT complexation can be
indeed applied to a wide subset of electron-rich donors with
heavy-atom incorporated into them to harvest the *CT phos-
phorescence. For example, CT co-crystals of PmDI with another
electron rich donor, with only two methyl groups and heavy
atoms, 1,2-diiodo-4,5-dimethylbenzene (D;), also exhibited
similar results although we could not solve the crystal structure
(Fig. S177). It is worth noticing that, due to the reduced electron-
rich character of D;, compared to D; or D, the extent of CT

10016 | Chem. Sci,, 2022, 13, 10011-10019
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strength was diminished, which is reflected as a blue-shift in
the excitation spectrum and emission spectrum of A+Dj;
compared to that of the A+D, cocrystal (Fig. S171). Comparison
of the respective maxima of *LE phosphorescence of bare
acceptor and *CT phosphorescence A+D; and A+D, pair sug-
gested that we can indeed modulate the *CT phosphorescence
emission by changing the donor strength (Fig. S17 and Table
S9t), which would be worth exploring with a different series of
electron rich donor molecules. The phosphorescence quantum
yield of A+D; is 42% in air.

Finally, in order to confirm the role of the electron rich
aromatic donors to stabilize the CT state, we have utilized
similar heavy atom substituted aromatic donor without any
methyl substitution to decrease the donor strength (inset of
Fig. 5a). Hence, we have grown 1 : 1 co-crystal of PmDI with 1-
bromo-4-iodobenzene (D,) as the donor. In contrast to the
previous observations, the excitation spectra of A+D, co-crystal
monitored at 560 nm did not show any red-shifted band and
was similar to the excitation spectra of acceptor PmDI, pointing
towards the absence of a CT complexation (Fig. 5a). The
resulting bright green crystals exhibited intense emission upon
exciting at 340 nm with a maximum at 500 nm, unlike weakly
emissive individual donor and acceptor. The emission lifetime
was measured out to be 0.38 mS (Aexc = 340 NM, Acoltected = 560
nm), and the gated emission spectra (delay time = 0.1 ms)
indicated the presence of delayed component in the emission
which was proven out to be phosphorescence by the tempera-
ture dependent studies (Fig. 5b, ¢, S18 and Table S10%).
Surprisingly, the gated emission spectra of the co-crystals
entirely replicated the phosphorescence spectrum of PmDI in
PMMA, collected at 20 K under 340 nm excitation, suggesting
the source of origin of emission of A+D, to be the LE triplet state
(°LE) of the PmDI. Impressively, the phosphorescence quantum
yield of A+D, is 52% in air and 70% under vacuum, indicating
a significant enhancement in the phosphorescence efficiency
compared to that of PmDI alone which is weakly emissive in
crystalline state.

Single crystal XRD analysis helped us to explain the reason
behind the excellent *LE phosphorescence efficiency of the
A+D, co-crystal (Fig. 5d, e, S19 and S20f). The co-crystals
showed layers of self-sorted donor and acceptor molecules,
which are alternatively spaced in the lateral direction, directed
by the halogen-carbonyl interactions (iodo-carbonyl and
bromo-carbonyl) between the molecules within a layer (Fig. 5d
and S20%). In addition, four interlayer halogen—-carbonyl inter-
actions per donor molecules and, two each with the above and
below layers, (together constituting a total of six halogen-
carbonyl interactions) were also observed (Fig. 5e and S207). We
envisage that the presence of multiple halogen bonding inter-
actions resulted in the significant enhancement of the SOC and
ISC rate value via external heavy atom effect to achieve very high
phosphorescence efficiency from *LE state of PmDI (Fig. 5d, e
and Table S71). Further, in the absence of the significant CT
interactions, A+D, molecules adapt a two-dimensional lateral
organization, rather than an alternatively stacked arrangement
observed with A+D,.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 S3LE phosphorescence studies and single-crystal X-ray diffraction data of A+D,4 co-crystal: (a) excitation spectra of individual donor (Da,
Amonitored = 420 nm), acceptor (A, Anonitored = 560 Nm) and donor—acceptor co-crystal (A+D4, Amonitored = 560 Nm), which suggest absence of CT
band (inset shows molecular structure for A+D,4 pair). (b) Steady-state emission spectra of bare acceptor (A) and donor—acceptor pair (A+D,)
shows weakly emissive nature of acceptor and highly emissive nature of donor—acceptor co-crystal (Aexc = 340 nm). (c) Normalized delayed
emission spectra of acceptor doped in PMMA matrix at 20 K (1 wt% with respect to PMMA) and donor—acceptor pair at room temperature show
the same emission maximum, hinting towards the 3LE emission (Aexc = 340 nm). Donor—acceptor arrangement of A+D, pair, driven by halogen
carbonyl interactions, (d) I---C=0 (marked with red lines) and Br---C=0O (marked with green lines) in the same plane, (e) I---C=0O (marked with
light-green and brown lines) and Br---C=0 (marked with blue and orange lines) in the parallel plane.

Further, we have used 1,4-dibromobenzene derivative (Ds) as
a donor to deeply investigate the role of external heavy atom
effect in triggering the *LE phosphorescence. As expected, the
emission spectra of A+Ds co-crystal was exactly similar to the
*LE phosphorescence of acceptor suggesting the origin of the
phosphorescence emission to be *LE in nature (Fig. S21 and
Table S117). Although we could not obtain the crystals for A+Ds,
powder XRD studies suggest that the packing of the donor and
acceptor is similar in both A+D5 and A+D, (Fig. S227). Intrigu-
ingly, A+D; showed a quantum yield of 16% in vacuum (11% in
air), which is lesser than that of A+D, (70% in vacuum and 52%
in air), signifying the pivotal role of external heavy atom in
inducing efficient phosphorescence emission (*LE). We infer
that the presence of heavier iodine in A+D, in the place of
bromine increased the SOC, which resulted in efficacious
emission with higher quantum yield. Furthermore, the theo-
retical calculations of A+Ds; also supported the observed spec-
troscopic properties which showed that CT interactions are
absent between the donor and acceptor molecules (Fig. S23-
S25%). The computed NTOs showed that both the hole and

© 2022 The Author(s). Published by the Royal Society of Chemistry

electron are located on the m-surface of the acceptor for first
excited singlet (S;) and triplet (T;) states, suggesting the LE
transition (Fig. S24 and S257).

Conclusions

In summary, we have reported room-temperature *CT phos-
phorescence from organic donor-acceptor co-crystals for the
first time using pyromellitic diimide as the acceptor and heavy
atom-substituted aromatic molecules as donors. The detailed
spectroscopic studies and further analyses suggested that the
donor-acceptor non-covalent complexation is an efficient
modular approach to manipulate the electronically excited
states of molecules. First, we have shown that PmDI (acceptor)
can form ground-state CT complex with different aromatic
solvents which has led to the CT fluorescence emission from the
newly formed 'CT states in solution. Inspired from the potential
of PmDI to form CT complexes and its effortless accessibility to
triplet state, we further extrapolated the CT complexation of
PmDI with electron-rich aromatic donors incorporated with
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heavy atoms to extract *CT phosphorescence from the donor-
acceptor complex under ambient conditions. The 1 : 1 co-crystal
of PmDI with donors D, and D, exhibited an efficient greenish-
yellow room-temperature phosphorescence emission from the
CT states with appreciable quantum yields and lifetime
augmented by the minimal vibrational dissipation of the triplet
state and the enhanced rate of ISC facilitated by various inter-
molecular interactions between the donor and acceptor mole-
cules in the long-range ordered alternate assembly. Although,
very recently, a few examples on through-space CT based TADF
have been reported,” to the best of our knowledge, we have
presented the first report on *CT phosphorescence realized
under ambient conditions. Later, we have switched the *CT
(Amaximum = 528 nm) emission to LE (Amaximum = 500 nm)
emission, similar to neat PmDI by utilizing heavy-atom
substituted donors D, and D5, with reduced donor strength.
In a concise, we can conclude that the supramolecular strategy
based on through-space CT interactions, delineated in the
current study can be cleverly used as tool to modulate between
the various excited state manifolds of arylene diimide acceptors
by the judicious choice of donors. We envisage that the current
study also opens up an innovative way for generating 'CT and
3CT states by a supramolecular strategy for the molecular design
of efficient TADF emitters unlike the conventional covalently
linked systems. We believe that the present study has
a momentous scope to harness triplet excitons from purely
organic phosphors with remarkable efficiency, tunable emis-
sion and less synthetic efforts.
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