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We propose a route for the rational design of engineered graphene-based nanostructures, which feature
enormously enhanced electric fields in their proximity. Geometrical arrangements are inspired by
nanopatterns allowing single molecule detection on noble metal substrates, and are conceived to take
into account experimental feasibility and ease in fabrication processes. The attention is especially
focused on enhancement effects occurring close to edge defects and grain boundaries, which are
usually present in graphene samples. There, very localized hot-spots are created, with enhancement
factors comparable to noble metal substrates, thus potentially paving the way for single molecule
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1. Introduction

Graphene is capable of strongly confining light down to the
nanometer scale due to the formation of highly localized
surface plasmons under the effect of external electromagnetic
radiation.’? Also, plasmons in graphene have the peculiar
property that their plasmon resonance frequency (PRF) can be
tuned by adjusting shape, size, gating or doping of the
samples.' For these reasons, plasmons are the cornerstone of
several technological applications, ranging from quantum
information and telecommunication to biological sensing."**
Similarly to metal nanoparticles (MNPs), graphene may be
exploited to enhance the spectral response of adsorbed molec-
ular systems, due to its plasmonic properties®*? that give rise to
local electric field enhancement.'*** However, for specific MNP
geometrical arrangements, single molecule detection becomes
possible due to huge field enhancements (i.e. the creation of the
so-called hot-spots),**?” whereas such behavior has not been
confirmed for graphene nanostructures. In fact, pristine gra-
phene has been used as a substrate for the so-called graphene
enhanced Raman scattering (GERS), but the measured
enhancement in the molecular Raman signal is orders of
magnitude lower than for MNPs.”® For this reason, the
measured GERS enhancement has been attributed to chemical/
charge transfer effects and only marginally related to electric
field confinement,”®* thus substantially hampering the broad
application of graphene as a substrate for surface enhanced
Raman spectroscopies (SERS).*>*®* However, is it possible to
achieve the desired field enhancement to effectively exploit
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detection from graphene-based substrates.

graphene-based nanostructures in enhanced spectroscopy? In
this work, we propose a computationally driven rational design
of structural patterns, based on a fully atomistic approach that
we have recently developed.**** Remarkably, our design route
can guide a priori the definition of ideal structural patterns with
the desired enhancement features.

The geometrical patterns investigated fall within two cate-
gories. Firstly, we take inspiration from metal nanoaggregates
that allow single molecule detection,®**” and that bear plas-
monic nanocavity hot-spots. Examples are MNP dimers or
oligomers commonly endowed with tips defined at the atomic
level.**** Although these geometries have already been exten-
sively studied for the case of metal substrates,>*3*384042-4> fy]]
understanding on how such arrangements can tune field
enhancement in graphene-based materials is still missing.

The second set of structures that we investigate are specifi-
cally tailored to reach enhancement factors that would allow
single molecule detection on graphene. More specifically, we
design atomically defined hot-spots arising in the proximity of
edge defects and grain boundaries. In particular, we focus on
systems that can be experimentally obtained, e.g. bite defects
arising in graphene nanoribbons (GNRs)***° or cracks propa-
gating in polycrystalline graphene (PCG) under the effect of
mechanical strain.*** Therefore, we showcase the pivotal role
of atomically defined defects in increasing enhancement and
field confinement in graphene-based nanostructures.

The manuscript is organized as follows. In the next section,
we briefly validate the accuracy of our computational model to
predict enhancement factors. Such kind of investigation is
necessary to move on to predict field enhancement and locali-
zation in carbon-based systems inspired by MNPs geometrical
patterns, such as graphene nanocones monomers and dimers.
Then, we study electric field enhancement in systems endowed
with edge defects, grain boundaries and cracks, thus suggesting
novel experimental setups for single molecule detection

© 2022 The Author(s). Published by the Royal Society of Chemistry
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applications. Finally, a brief summary and future perspectives
of this work end the manuscript.

2. Methods

The optical properties of graphene-based nanostructures are
studied by exploiting wFQ, which is a classical, fully atomistic
approach, which modulates Drude conduction with quantum
tunneling effects.**** In particular, each atom is endowed with
a complex-valued charge g; which adjusts to the external
oscillating electric field E(w). The set of charges q is obtained by
solving an equation of motion, where charge-exchange between
atoms is governed by a Drude mechanism, and modulated
through quantum tunneling. In the frequency domain, the
classical wFQ equation of motion for charges q in graphene-
based materials reads:*

2TVF

n Ay el el
1 —iwt %Ej:f(l']) T,/ ('ufl B #’l> (®)

where w is the frequency of the external electric field, T the
relaxation time, vy the Fermi velocity, and n,p the 2D-density of
graphene. A; is the effective area connecting the atoms 7 and j, [;;
their distance, u$' the electrochemical potential of atom i and
flly) is a damping function taking into account quantum
tunneling, by allowing charge exchange among nearest
neighbor atoms and exponentially decreasing when distance
increases. Thus, f{;;) introduces an additional charge-exchange
mechanism different from that governed by the classical Drude
model.** Notice that in this way wFQ can perfectly reproduce the
plasmonic behavior of metal nanoparticles characterized by
subnanometer junctions, where quantum tunneling effects are
crucial.?**>%*% The f{I;) step function, defining the quantum
tunneling mechanism, reads:

—wg; =

1

(2)
Ly

where [ is the equilibrium distance between two first neighbors
(i.e. I} =1.42 A),*® whereas d and s determine the position of the
inflection point and the thickness of the curve, respectively.****
Also, notice that spill-out and surface-enabled Landau damping
are not currently included in our classical modeling of gra-
phene.’**%2 The effective mass is set to m’ = \/Tnyp/vg,*
whereas the Fermi energy is defined as Er = /vp./Tnyp, leading
to an electronic density which depends on Ey, which can be
tuned according to the experimentally applied gating. The
external electric field induces an electric field on the nano-
structure, which is calculated from the Gaussian charge distri-
butions on each atom. Unless otherwise stated, in all
calculations we set Er = 400 meV, T = 600 a.u. (i.e. 14.5 fs) and vg
=10°m s ' 7 s fitted against reference ab initio®® data in order
to take into account scattering processes leading to plasmon
relaxation (see Fig. 1). In particular, for plasmon energies above
the phonon threshold energy (of =0.2 eV), the electron-phonon
coupling dominates the plasmon decay and the scattering time

fy) =
1 +exp
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Fig. 1 ©FQ and ab initio (reproduced from ref. 63) ¥* values for (a)
AC-AC and (b) ZZ-ZZ graphene dimers (d = 20 nm) as a function of
the gap width D. The graphene Fermi energy is Er = 0.4 eV for each
configuration.

becomes of the order of 10 ** 5.5+ Therefore, the fitted 7 =
14.5 fs takes into account both decay channels.

3. Results and discussion
3.1 Model validation

We first study the electric field enhancement (I’ = |E|/|Eq|)
exhibited by planar graphene dimeric nanoantennas (see Sec.
S1 and S3 in the ESIY). In particular, we consider monomers
with circular shape (with diameter d ~ 20 nm), and dimers
obtained by coupling armchair (AC) or zig-zag (ZZ) graphene
monomers at a distance D (see Fig. 1a and b for their struc-
tures). In our simulations, the external electric field is polarized
along the y direction (see Fig. 1a and b). We calculate the field
enhancement associated with GERS process, which is propor-
tional to Y ** at the center of mass of the whole system, in the
graphene plane (i.e. z= 0 nm), at the PRF of each dimer (see also
Sec. S3 in the ESIf). For both AC and ZZ configurations, the
considered PRF is associated with a boundary dipolar plasmon
(BDP), i.e. a dipolar plasmon arises in each monomer. In Fig. 1a
and b, wFQ results are compared with ab initio data reproduced
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from ref. 63; the agreement between the two methods is
impressive, thus demonstrating the level of reliability of the
classical wFQ method. Only a minor discrepancy is observed for
Z7-7Z with D = 2 nm gap. This is probably due to edge effects
which cause an increase of the field confinement in the prox-
imity of the gap and, as a consequence, a slight increase in the
field enhancement. Such edge effects become negligible by
increasing the gap (D = 4 nm). In line with ab initio results,*
wFQ predicts the maximum field enhancement for the smallest
gap (D = 2 nm) and a rapid decrease as the width of the
nanojunction increases. Additional comparison between wFQ
and ab initio results for selected circular and triangular
graphene-based arrangements are reported in Sec. S3 of the
ESI, showing again almost perfect agreement. These findings
confirm the reliability of wFQ to describe the electric field
enhancement in graphene-like structures.

3.2 Pristine graphene sheets

We now take advantage of wFQ favourable computational
scaling,* to study electric field enhancement in several gra-
phene disks of increasing size (see also Sec. S4 in the ESIt), with
a diameter D from 2 nm (112 atoms) to 200 nm (more than 1.1
million atoms). In Fig. 2, the electric field is computed at the
center of the disk, at d = 3.5 A from the substrate (in line with
the average adsorption distance of molecules on graphene”®7°),
and at distance s = 3.5 A from the side of the disk. Both
enhancements are computed at the PRF of the dipolar plasmon
mode of each disk (see inset in Fig. 2). We first focus on the
enhancement computed at the center of the disk. ¥'* decreases
as the disk size increases, however, for small diameters, I'*
increases due to edge effects, which become negligible for D =
20 nm. Remarkably, for diameters typically exploited in GERS
experimental setups (i.e. D >> 50 nm), the enhancement is
strongly reduced and tends to I'* ~ 40 for D = 200 nm. On the
other hand, ¥* calculated at the edges is three orders of
magnitude larger than the values at the center (see right axis in

1.2-10° 1.0-10°
’g 8.0-10° p
% di s 5.0-10° C:
;Q-)/ —— e %
& 4010 D =~
@ Center (d=3.54) |
® Side (s =3.54A)
0 ‘ ; ; . !
0 40 80 120 160 200

Diameter D (nm)

Fig. 2 Calculated Y* for pristine graphene disks as a function of the
diameter D. Values are computed at the dipolar plasmon mode (see
inset for a graphical representation) at two specific points: the center
of the disk (blue dot) at distance d = 3.5 A (red dot), and at a distance
s = 3.5 A from the edge (green dot). The Fermi energy is equal to
Er = 0.4 eV in all calculations.
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Fig. 2). In particular, I'* increases with the dimension of the disk
and converges to I'* = 8.0 x 10> for D = 120 nm. However,
notice that such large I'* values rapidly decay by receding from
the edges, bringing no benefit to potential spectral enhance-
ments in case of adsorbed molecular systems, which are
generally placed away from edges.

3.3 Graphene tips

We focus on graphene tips based on 3D bow-tie antennas ob-
tained by pairing two hollow carbon nanocones forming
a nanocavity (see Fig. 3a). Such structures are inspired by the
graphene 2D bow-tie antennas which we studied above to vali-
date the method.®*”*”> Hollow graphene nanocones have been
experimentally reported.””® In addition, graphene nanocones
are currently exploited for the encapsulation of gold tips in
atomic force microscopy (AFM) experiments to increase their
mechanical stability.”” The studied geometries are constructed
by removing a slice of « angle from a circular graphene sheet,
and welding together the two parts, for a given height / (see
Fig. 3a). By varying both « and %, the 8 angle defining the
sharpness can easily be tuned. Here we select § = 30° and 8 =
40° to study the dependence of I'* on the nanocone shrinking.
In fact, the nanocones have a very sharp, atomistically defined,
vertex, which is constituted of 3 (8 = 30°) or 4 carbon atoms (6 =
40°). The considered 3D bow-ties are formed by coupling two
facing nanocones at distance D; electric field is always polarized
along the axis connecting them.

Computed I'* values for the boundary dipolar plasmon mode
(see S5 in the ESIT) at the center of the gap as a function of D are
reported in Fig. 3b. The maximum value of [E|/|Eo| (2.0 x 10°)
corresponds to D = 2 A for both configurations, and rapidly
decreases as D increases. |E|/|E,| is larger for the structures with
6 = 30°, due to the presence of a sharper tip, although
computed fields are of the same order of magnitude. Also, |E|/
|E| is strongly reduced for D = 1 A, however the two monomers
are almost covalently bonded at this distance and thus
a dramatic change in their optical properties is expected.

In order to fully characterize the field enhancement, the local
character of the enhanced electric field can be quantified. Such
a feature is deeply connected to the actual resolution of surface
enhanced spectral signals. By following ref. 44 and 78, the
effective localization area A is defined as:

I IEG p, 2
A= hJV v 3)

where E and E,,, are the induced field and its maximum values
calculated in a thin slab of volume V and thickness 7 = 2 A
parallel to the field direction, centered in the middle of the gap
for each distance D. Computed A values as a function of D are
reported in Fig. 3b. The localization of the electric field rapidly
increases as the gap between the two cones increases (for both
8 angles), however A remains well below 1 nm?, i.e. much lower
than typical values for metal picocavities. The field locality can
be further appreciated by plotting the electric field values in the
plane parallel to the field direction (see Fig. 3b for the 3D bow-
tie with D = 5 A). Clearly, structures with § = 30° show the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Geometrical parameters of graphene-based nanocones, 3D bow-ties and graphene tip-disks. (b) 3D bow-tie electric field

enhancement factors (|E|/|Eq| and I'*) and localization area (A) for both § = 30° and 8 = 40°, as a function of the gap width (D) calculated at the
boundary dipolar plasmon (see left panel) in the center of the gap. 8 = 30° and 8 = 40° electric field enhancement factors color map for 3D bow-
tie nanostructure with D = 5 A. (c) Graphene tip-disk electric field enhancement factors (|E|/|Eo| and I'*) and localization area (A) for both 8 = 30°
and B = 40°, as a function of the gap width (d) calculated at the boundary dipolar plasmon (see left panel) in the center of the gap. 8 = 30° and 8 =
40° electric field enhancement factors color maps for graphene tip-disk nanostructure with d = 5 A. The Fermi level is set to Er = 0.4 eV for each

configuration.

largest enhancement values, due to the higher cone sharpness,
which, as stated above, is responsible for a larger plasmon
confinement. However, for both @ angles, I'* is of the order of
10", thus a huge electric field enhancement comparable to
what can be obtained with MNPs is expected. Also, notice that
the obtained Y is four orders of magnitude larger that the value
we obtained for the monomeric moiety, thus demonstrating the
relevance of creating a subnanometric junction (see Sec. 5 in the
ESIY).

An alternative geometrical arrangement can be designed by
coupling a tip and a sheet, where a molecular system can
potentially be deposited, similarly to what is done in case of tip
enhanced spectroscopies.*****® Therefore, plasmonic picocav-
ities can be created by placing a graphene sheet (in our case,
a graphene disk with radius 10 nm) at close distance from the

© 2022 The Author(s). Published by the Royal Society of Chemistry

apex of a nanocone (see Fig. 3a). Also in this case, we perform
the same simulations as for the 3D bow-tie system, by varying
the gap between the sheet and the apex (d) from 1 to 10 A. The
electric field enhancement is calculated at the boundary dipolar
plasmon resonance frequency, which is associated with
a dipolar mode involving both the cone and the graphene disk
(see Fig. 3c). |E|/|Ey| rapidly decreases as the gap increases,
while the opposite trend is observed for the effective localiza-
tion area 4, which is in this case computed for a slice centered in
the middle of the gap. The same also holds for small gaps, for
which the two structures are bonded. Finally, ¥ is graphically
reported for both § = 30 and § = 40° and d = 5 A, as computed
in the plane parallel to the electric field direction. For both
angles, I'* is about 10°, thus one order of magnitude lower than
for 3D bow-ties. This behavior is expected, because in tip-disk

Nanoscale Adv., 2022, 4, 2294-2302 | 2297
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structures a single tip is responsible for the huge electric field
enhancement. However, this geometrical arrangement is
promising and could be exploited in GERS experiments. In fact,
it returns enhancement factors that, according to our calcula-
tions, could be up to seven orders of magnitude larger than
those commonly reached in current GERS experiments
exploiting pristine graphene as substrates. Also, it might
provide huge field localization, thus allowing excellent spectral
resolution. To conclude, for both 3D bow-ties and tip-disk
arrangements, we focused on the dipolar plasmon where
charges accumulate near the tips of both structures. Remark-
ably, the dipolar nature of these plasmon modes does not
change by increasing the size of these systems.

3.4 Bite defects

We now move to investigate structures bearing atomic-scale
defects. We first focus on AC and ZZ graphene nanoribbons.
Their geometries are constructed according to the experimental
structures reported in ref. 46 (see Fig. 4). In particular, the
number of missing rings forming the bite defects and the
relative distance between two adjacent defects resemble those
experimentally measured.*® There, atomically precise fabrica-
tion methods are exploited, which in principle allow for a deep
control of the system's geometry.>® However, the resulting
samples may contain a certain percentage of structural disorder
due to missing benzene rings resulting from the synthesis.***°

Fig. 4 Geometries and electric field enhancement factor (|E|*/|Eq|?)
color maps for ZZ (a) and AC (b) graphene nanoribbons with bite
defects. Color maps are calculated at distance d = 3.5 A from the
nanostructure. The Fermi energy is set equal to Er = 0.4 eV.
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These defects are known as bite defects and affect charge
transport along the nanoribbon through charge
confinement.***

Electric field enhancements (|E|*/|Eo|*) for both AC and ZZ
GNRs with bite defects are computed at their PRFs, on a plane
placed at d = 3.5 A (see Fig. 4). When the incident electric field is
polarized along the x-direction, i.e. the system main axis, the
plasmon excitation is associated with a localization of charge
around the bite, in both AC or ZZ configurations. Such locali-
zation is associated with I'* larger than 10° at d = 3.5 A. Thus,
bite defects strongly trap plasmons, leading to the formation of
hot-spots. Similar to the previous cases, we can quantify the
local character of the enhanced electric field by means of its
effective localization area 4, which is reported in Fig. 4. The
induced electric field is localized inside the bite and the effec-
tive area is subnanometric. Interestingly, in this case the huge
atomistic localization of the electric field follows the presence of
a hole in the structure, whereas in more common nano-
structures tips/needles are exploited.

From the numerical point of view, the enhancement is much
lower than in the case of cone-based structures (see above). A
possible strategy to increase the induced fields would consist of
exploiting one of the most peculiar properties of graphene, i.e.
the Fermi level tunability. In fact, by increasing the Fermi
energy (Eg), the number of electrons involved in the collective
excitation increases, and in turn also the electric field. Thus, we
vary Eg from 0.2 eV to 1.0 eV (see Section S6 in the ESIT), which is
a range experimentally achievable.*”® The enhancement factors
increase by increasing Er, without any loss in the induced fields
local character. We finally notice that, similar to the corre-
sponding experimental setups, the systems are composed of
a relatively small number of atoms; therefore, even larger field
enhancement factors are expected for bigger nanostructures.

3.5 Strained polycrystalline graphene sheets

In this section we focus on a 40 nm x 40 nm polycrystalline
graphene (PCG) sheet, as shown in Fig. 5a. The interest in
studying such structure is driven by two reasons. First, PCGs are
experimentally accessible.*~**#%#* Secondly, as we have already

IEI/E,|
6

a) | b)

Polycrystalline Graphene

S — — s
| l
X
Fig. 5 (a) Graphical representation of the stretching process of a PCG

sheet of 40 nm of side. The black box highlights the region where the
maximum field enhancement for the stretched structure is computed.
(b) Y color map arising for the pristine PCG sheet at rest. The Fermi
energy is set to 0.4 eV.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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shown and discussed above, the generation of high field
enhancement and confinement, hot-spots, in large
graphene-based systems is particularly challenging.*®

To create regions characterized by large electric field
enhancement and confinement, we apply a mechanical stress to
PCG in terms of an isotropic strain. Note that dimensions
comparable with those exploited in the present work (40 nm X
40 nm) have been used to model the cracking of experimentally
studied graphene sheets.***>* To simulate the stretching
process, we perform a reactive molecular dynamics (MD)

Le.

IEVIE,
“)ll PRF = 0.175 eV 6
5
4
3
2
[ |
X IEl/IE,|
200
150
100
A = 0.17 nm? 50
Y4=3.9-10°
IEVIE,
9B PRF = 0.185 eV
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20
A = 1.34 nm? 10

Y*=4.8-10°
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calculation employing ReaxFF*”*® on PCG, where a strain rate of
. 1 dL . . .

e(t) = AT 2.161 ns' is applied along the x and y direc-

0

tions for 56 ps (see Fig. 5a and Sec. S2 in the ESI} for more
details about the computational protocol). From the MD we
extract six snapshots (see Sec. S7 in the ESIT) at different strain
percentages €. Each geometry is then excited by an external
monochromatic electric field polarized along the y direction
and oscillating at the PRF of the considered geometry see
Fig. 5a. For all the snapshots, the maximum field enhancement

[EVIE,|
PRF = 0.170 eV
d=35A 40

e =3.69 %

A = 1.13 nm? i
Y =48-10°
IEl/E,|
PRF = 0.185 eV 0
d=35A 60
50
40
30
20
A = 0.83 nm?
10
Y{=28-10"
IEVIE,
PRF = 0.190 eV
d=35A 30

Fig. 6 Computed |E|/|Eo| color maps of PCG under isotropic strain € = 3.20% (a), 3.69% (b), 4.18% (c), 4.40% (d), 4.50% (e) and 4.85% (f). The
maximum enhancement is calculated in the region highlighted in the white box. The Fermi level is set to Er = 0.4 eV for all calculations.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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r* is computed in the region highlighted in the black box in
Fig. 5a, on a plane parallel to the PCG and placed at 3.5 A from
it. This region has been chosen because it corresponds to the
area where the first crack starts to form (see Sec. S7 in the ESIT).

To evaluate the effects of defects formation, we compare the
field enhancement computed for each geometry with those of
the structure at rest. Pristine PCG features a dipolar plasmon at
0.185 eV; the charge density is localized at the edge of the
structure (not shown), similarly to what we observed previously
(e.g. see Fig. 2). The field enhancement away from the edge is
low, i.e. ¥* = 1.2 x 10° (see Fig. 5b).

As a result of the application of a tensile stress, cracks are
first formed in the substrate, then they propagate across the
sample, in agreement with previous observations.** Thus,
narrow gaps between adjacent regions appear and, by further
increasing the strain, the graphene sheet breaks completely (see
Sec. S7 in the ESI}). As soon as defects are formed, plasmon
confinement and field enhancement are observed in regions
away from PCG edges (see Fig. 6a-f). A clear dependence of the
enhancement upon the applied strain is not observed (see
Fig. 6), whereas plasmon charges are indeed confined on edges
and defects along the cracks. This suggests that once a crack
starts forming, the kinetics of the cracking process is correlated
to the reported enhancement more than the actual strain which
is applied. However, high field enhancement and sub-
nanometric localization are simultaneously reached in certain
surface regions for different € values. The highest enhancement
occurs for € = 4.18%, being I* = 3.9 x 10° and the effective
localization area A = 0.17 nm” (see Fig. 6c). Therefore, the
isotropic strain deformation of PCG seems to induce the
formation of highly confined and enhanced fields, i.e. hot-
spots, along the cracks. Moreover, it is known that graphene
edges and vacancies can act as adsorption sites for various types
of analytes.***> Although this is not directly proven in this work,
our results suggest that morphological defects not only behave
as hot-spots, but can be ideal candidates for adsorption of target
analytes, in order to allow their probing through surface-
enhanced spectral signals. Therefore, common shortcomings
of graphene substrates in the context of surface-enhanced
spectroscopies might be solved through defect engineering.

4. Summary and conclusions

We have shown that high electric field enhancement and
confinements can arise in engineered graphene-based nano-
structures. The latter are designed by following two approaches.
The first mimics geometrical arrangements commonly exploi-
ted to create hot-spots with noble MNPs, such as 3D bow-tie
antennas. The second exploits graphene peculiar properties,
such as edge defects and cracks propagating in polycrystalline
substrates. Computed field enhancement and confinement
factors show that in all these structures hot-spots are induced,
which can be used as potential substrate for surface-enhanced
spectroscopies. Notably, in some cases the computed field
enhancement is comparable with the values which are observed
in widely-used metal nanosubstrates exploited in SERS, thus
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suggesting that single-molecule detection is potentially acces-
sible also in graphene-based nanostructures. In addition,
computed confinement factors go down to the subnanometric
scale, thus also suggesting a huge potentiality of graphene to
strongly confine plasmon-induced enhancement. To conclude,
the findings of this study suggest that by proper engineering
graphene-based structures, the common shortcomings re-
ported for graphene when it is exploited as a substrate for
surface-enhanced spectroscopies can be solved. We hope that
our work can inspire further experimental investigations to
confirm our theoretical predictions.
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