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Machine learning is used across many disciplines to identify complex relations between outcomes and

numerous potential predictors. In the case of air quality research in heavily populated urban centers,

such techniques were used to correlate the impacts of Traffic-Related Air Pollutants (TRAP) on

vulnerable members of communities, future pollutant levels, and potential solutions that mitigate adverse

effects of poor air quality. However, machine learning tools have not been used to assess the variables

that influence measured pollutant levels in a suburban environment. The objective of this study is to

apply a novel combination of Random Forest (RF) modeling, a machine learning algorithm, and statistical

significance analysis to assess the impacts of anthropogenic and meteorological variables on observed

pollutant levels in two separate datasets collected during and after the COVID-19 lockdowns in

Kitchener, Ontario, Canada. The results highlight that TRAP levels studied here are linked to meteorology

and traffic count/type, with relatively higher sensitivity to the former. Upon taking statistical significance

into account when assessing relative importance of variables affecting pollutant levels, our study found

that traffic variables had a more discernible influence than many meteorological variables. Additional

studies with a larger dataset and spread throughout the year are needed to expand upon these initial

findings. The proposed approach outlines a “blueprint” method of quantifying the importance of traffic in

mid-size cities experiencing fast population growth and development.
Environmental signicance

Assessing air quality at the neighborhood scale provides information on pollutant levels and sources that is oen missed by regional stations. Since natural
variability and human activities factors affect pollutant levels used in communicating air quality to the public, quantifying the relative importance of these
factors would guide strategic urban planning and regulations aimed creating healthy air for all. Here we employ innovative mathematical tools that analyze data
from a network of low-cost air quality stations in Kitchener, Ontario, Canada for correlation with meteorology and traffic counts/type during aer COVID-19
related lockdowns. Our ndings show that pollutant levels are sensitive to traffic changes even when meteorology plays the dominant role in their levels.
1. Introduction

The application of machine learning algorithms to analyze air
quality data is increasing in “smart cities” that utilize numerous
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air monitoring sensors to collect near real-time information
accessible by both the government and citizens alike.1 These
machine learning algorithms have a multitude of uses such as
predicting future pollutant levels,2 determining the impacts of
pollutants on the development in adolescents,3 and quantifying
the impacts of anthropogenic sources and meteorology on local
air quality.4 Recent studies explored the use of machine
learning to predict spatial- and size-resolved particle concen-
trations downwind from roadside vegetation barriers that serve
as a layer of protection against traffic-related air pollutants
(TRAP) to better understand mitigation strategies.5,6 Other
studies employed machine learning as a forecasting tool to
predict future smog events caused by TRAP.7

The air pollutants that are routinely measured due to their
known health impacts include nitric oxide (NO), nitrogen
dioxide (NO2), ground-level ozone (O3), ne particulate matter
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(PM2.5), carbon monoxide (CO), and carbon dioxide (CO2). The
combustion of fossil fuels in automotive vehicles is known to be
a major contributor to levels of nitrogen oxides (NOx, x ¼ 1,
2),8–10 CO,11 and volatile organic compounds (VOCs). The
photochemical decomposition of NO2 in the troposphere gives
rise to oxygen radicals, which react with atmospheric oxygen
and VOCs to form ground-level ozone, a secondary pollutant.12,13

Primary sources of PM2.5 include wind-blown dust particles,
biomass burning, industrial activity,14,15 and non-exhaust
emissions stemming from the wear and tear of automotive
breaks, tires, and roads.16 Secondary PM2.5 form in the atmo-
sphere from complex atmospheric multiphase reactions
involving VOCs and other chemicals in the gas and condensed
phases.8,14

Prolonged exposure to the aforementioned pollutants results
in adverse health effects in local communities, with a larger
impact on vulnerable members with pre-existing conditions
such as heart disease and asthma.17 Long periods of exposure to
these pollutants can worsen asthmatic symptoms, increase
chances of genetic defects in unborn children,18 impact
adolescent health,19 increase the risk of cardiovascular diseases,
and cause organ failure.9,14,20 Recent studies on the impacts of
TRAP on cardiovascular health highlighted that even at lower
levels, TRAP is a signicant contributor to pollution-induced
diabetes mellitus,21 myocardial infarction,22 and cancer devel-
opment in the respiratory tract.23 In 2016, the United Nations
Children's Fund (UNICEF) reported 600 000 deaths in adoles-
cents globally as a direct result of exposure to unfavorable air
quality conditions.24 Hence, air quality continues to be a major
concern among governmental bodies worldwide, particularly in
urban communities, despite decades since enacting pollution
control regulations.25

With the rapid expansion of urban communities comes the
increase in industrialization and automotive use, both of which
serve to emit harmful pollutants that pose a hazard to both
human health and the environment.26,27 Over the past several
decades, the World Health Organization (WHO) had been
gradually lowering exposure limits of TRAP deemed as “safe” to
provide countries with realistic targets to reach over a specied
time interval. The most recent air quality guidelines (AQG)
released by the WHO in 2021 lowered the exposure limits once
again for NO2, O3 and PM2.5 to 13 ppb (24 h), 50 ppb (8 h), and
15 mg m−3 (24 h), respectively.28

The rst step in mitigating the negative impacts of air
pollution is enhancing monitoring at multiple scales, from
regional to hyperlocal, to better identify “hot-spots”. For
example, in July 2018, the Breathe London Blueprint project was
launched in London, UK with over 100 AQMesh air quality
monitoring multisensor pods.29 Similar projects were also
launched in Glasgow,30 San Francisco,31 Paris,32 and Mongolia.33

More recently, our research group launched a pilot project in
Kitchener, Ontario (ON), Canada using ve AQMeshmultisensor
pods distributed near different elementary schools to assess local
air quality across different locations in the network relative to the
provincial reference station located in a city park.34 Our rst
published study highlighted the difference in pollutant levels
among different locations relative to the reference station and
1390 | Environ. Sci.: Atmos., 2022, 2, 1389–1399
analyzed the effect of the wildres season on local air quality.34

Onemajor conclusion fromour study was the need for additional
measurements of traffic count, vehicle and fuel type, and local
meteorology that account for the effect of the built environment
on wind speed and direction, and temperature.

The objective of this study is to apply a combination of
machine learning and statistical signicance modeling to isolate
the variables that inuence pollutant levels collected using the
AQMesh multisensor pods in Kitchener, ON during a two-week
period in fall 2020 and 2021. This analysis allowed for the iden-
tication of the most probable traffic-related emission sources
and the sensitivity of pollutant levels tometeorology. Our analysis
also investigated the impact that lockdowns may have had on
traffic-related emission sources of air pollutants.
2. Methods and data analysis
2.1. Location of AQMesh multisensor pods

Five stationary multisensor pods (model version 2020) devel-
oped by AQMesh were installed in Kitchener, ON. These
multisensory pods use the most recent gas sensing algorithm
(v5.3.1), which allows for more accurate conversions of detec-
tion signals to pollutant concentrations. Four pods were
distributed near elementary schools, with the h pod co-
located within 30 meters of an air quality monitoring station
run by theMinistry of the Environment, Conservation and Parks
(MECP; see ESI Fig. S1 and Table S1† for details). We conducted
extensive analyses to assess the performance of these multi-
sensor pods in addition to highlighting the variability of
pollutant levels at each location.34 The pods of interest for the
analysis here are the ones located near a major highway
(highway 8) (Pod 1) and near a main suburban road (Pod 2).34
2.2. Acquisition of data

All pollutant data used in this study were obtained from the open
access dashboard for the multisensor air quality pods network in
Kitchener, ON.35 The raw data were subjected to rigorous quality
assurance protocols. First, the raw data was manually reviewed
and any erroneous datapoints, such as abnormally elevated
PM2.5 levels originating from increased relative humidity, were
omitted. Second, the manually reviewed dataset was subjected to
long distance scaling analysis. This “long distance scaling” refers
to sensors far beyond the co-location range of 1 meter, where
accurate scaling can take place. Briey, this analysis works by
identifying comparable datapoints between the AQMesh instru-
ment and the local reference, where hyperlocal events are
redacted, and the regional response to each target pollutant are
scaled accordingly. This method has been used and validated
across many similar projects, most notably in the Breathe Lon-
don pilot study.29 A more thorough explanation can be found in
the ESI section† of our previous publication.34 Meteorological
data were collected from two separate sources: (1) variables such
as wind speed, relative humidity, temperature, and atmospheric
pressure were collected from the solid-state sensors in each
AQMesh pod, and (2) precipitation and solar irradiance were
obtained from the National Climate Archives website.36 Wind
© 2022 The Author(s). Published by the Royal Society of Chemistry
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speed data was collected from the regional-run station near the
airport located approximately 9 kilometers from our multisen-
sory pods network.

Raw traffic data were obtained from the city of Kitchener,
which were collected on an hourly basis and contained traffic
counts classications of thirteen separate categories in
compliance with the Federal Highway Administration (FWHA)
protocols.37 This data allowed for more detailed observations
regarding the size and frequency of each classication type.
Rigorous quality assurance protocols were also conducted on
the traffic counts to ensure the validity of the data. Signicant
outliers were investigated comprehensively through a combi-
nation of reviewing recent documents pertaining to
construction-driven detours, communication with the staff in
the city of Kitchener, and physical observations of traffic ow
prior to incorporating manual adjustments.

The traffic count data were provided by the city of Kitchener
for only two locations: Pod 1 and Pod 2. Furthermore, the data
collected was further limited to the following periods: (1) October
20–November 10, 2020, and (2) October 7–October 18, 2021.
There were concerns that this small dataset of to 477 and 287 for
2020 and 2021, respectively, would present challenges with the
machine learning algorithm. This concern was found to be less of
an issue for accurately predicting levels than for quantifying the
statistical signicance of the predictive importance of the mete-
orological and traffic variables, as discussed in Section 3.3.

2.3. Machine learning model: Random Forest

The Random Forest (RF) model is a machine learning algorithm
which may be used to identify complex dependence patterns
between pollutant levels and the underlying meteorological
variables and traffic counts. RF operates by subsetting the
meteorological and traffic predictor variables – or features –

using decision trees and taking the predicted pollutant level as
the average in each subset. The output of many such trees is
analyzed, and a nal prediction model is obtained by pooling
the trees together.38–40 Scheme S1† shows an illustration of the
procedure followed by the sample code used in the model.
When the number of features compared to the number of data
points is relatively small, RF has prediction accuracy typically
far superior to that of multiple linear regression modeling.41–44

We present similar ndings for our data and other predictive
assessments of the RF model in Section 3.3.

One benet of the RF model is that it can rank the impor-
tance of the feature variables in predicting pollutant levels. This
ranking is done for each feature variable by calculating the
percent increase in mean square error (MSE) between the RF
model t to the original dataset (MSEoriginal) and to a dataset
with the values of the given feature variable randomly permuted
(MSEpermute), relative to the variance of the pollutant levels
(var(pollutant)) as shown in eqn (1):

%IncMSE ¼ MSEpermute �MSEoriginal

varðpollutantÞ � 100% (1)

where varðpollutantÞ ¼ 1
n� 1

Xn

i¼1

ðyi � yÞ2, yi is the pollutant

level for observation i, and �y is the average pollutant level. The
© 2022 The Author(s). Published by the Royal Society of Chemistry
MSE for the RF model is dened as the sum of squared
differences between the observed pollutant level (yi) and the
pollutant level predicted by the RF model (ŷRF(xi)), given the
feature vector (xi).45 This value is then multiplied by the
reciprocal of the total number (n) of considered values as
shown in eqn (2):

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷRFðxiÞÞ2 (2)

By considering the square of the differences, the MSE is very
sensitive to drastic changes. Since the correlation between the
permuted feature variable and pollutant levels is effectively
zero, the higher the calculated %IncMSE for a given variable,
the higher its importance when it comes to predicting pollutant
concentration.
3. Results and discussion
3.1. Statistical signicance analysis of meteorological data
between fall 2020 and 2021

With the lockdown measures put in place in fall 2020, statisti-
cally signicant reductions in overall pollutant levels were
observed across Southern Ontario in Canada.46 The installation
of AQMesh multisensor pods network in Kitchener, ON allowed
for a large volume of data to be collected before, during, and
aer the COVID-19 lockdown restrictions. Our previous publi-
cation on quantifying the statistical signicance of these
reductions highlighted that they were likely due to less
congestion and traffic in suburban communities.34,46

Fig. 1 compares the observed meteorological variables for
the two-week period studied in 2020 and 2021 for Pods 1 and 2.
Upon visual inspection, there are notable variations between
the two datasets, indicating that the inuence of meteorology
on pollutant levels may vary between the two years, as shown
later in Section 3.3. These visual observations were further
validated by the method of statistical quantication used in our
previous publication46 (see R code in ESI†), i.e., by calculating
the p-value against the null hypothesis that the median of each
variable in question is the same in 2020 and 2021. When the p-
value is greater than 0.05, the difference in medians is not
deemed to be statistically signicant, i.e., cannot be distin-
guished from natural day-to-day variations. In contrast, a p-
value less than 0.05 indicates that there is a signicant differ-
ence between the medians in 2020 and 2021, which could
potentially account for the difference in pollutant levels. The p-
value for each variable in question is reported in Table 1, which
are all close to zero, meaning that any of these variables could
potentially account for the difference in pollutant levels
between 2020 and 2021. Additional comparisons between
precipitation, wind speed, and solar irradiance were also con-
ducted using hourly data (ESI Fig. S2 and S3†). Statistical
analyses for these variables highlighted no signicant varia-
tions, indicating that the inuence they had on pollutant levels
should remain consistent over the two years compared.
Environ. Sci.: Atmos., 2022, 2, 1389–1399 | 1391
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Fig. 1 Box and whisker plot comparisons of meteorology parameters collected from multisensor pods for (A–C) Pod 1 and (D–F) Pod 2 during
October 20–November 10, 2020, and October 7–18, 2021. Whiskers extend from the 2nd percentile to 98th percentile, illustrating the variation
in each dataset.

Table 1 Quantitative comparisons of the averaged meteorological
data for October 20–November 10, 2020, and October 7–18, 2021a

Variable
Median
2020

Median
2021

p-Value
calculated

Pod 1
Pressure (mbar) 981.8 977.2 0.00
Temperature (�C) 9.00 15.9 0.00
Relative humidity (RH%) 69.8 93.0 0.00

Pod 2
Pressure (mbar) 980.8 977.2 0.00
Temperature (�C) 9.30 15.9 0.00
Relative humidity (RH%) 65.9 93.0 0.00

a Calculated p-values >0.05 indicate no signicant variations between
the two compared years. Values of 0.00 are in fact very small numbers
<5 � 10−6.
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3.2. Statistical signicance analysis of pollutant levels
between fall 2020 and 2021

Pollutant levels collected using the multisensor pods network
during fall 2020 and 2021 were also analyzed for statistical
signicance. Visual inspection of the box plots in Fig. 2 show
differences in the distribution of pollutant levels and median
for the same pollutant over the two years. Table 2 lists the
calculated p-values for each pollutant, which were all well below
0.05, indicating statistically signicant differences between the
two years studied. An interesting observation is that all pollut-
ants, excluding NO2, showed a decline in the median value
between 2020 and 2021. Lockdowns in 2020 resulted in shutting
down in-person learning at the schools close to the pods loca-
tion and forced the closure of non-essential businesses. In 2021,
the lockdown restrictions were relaxed, and students were
1392 | Environ. Sci.: Atmos., 2022, 2, 1389–1399
allowed to partially return to in-person learning. Non-essential
businesses were allowed to operate once more, and compa-
nies were beginning to adapt to a hybrid in-person/remote
system for their employees. These factors were thought to
have impacted traffic ow near the two pod locations studied,
which would explain the NO2 and O3 trends seen in Fig. 2. The
next section expands on this hypothesis and shows results from
the RF model that quanties the inuence that each metro-
logical and traffic variable has on the overall pollutant levels for
the time periods studied.
3.3. Relative importance of variables for observed pollutant
levels from RF model

The RF model was t to the data using 10 000 random trees and
with hyperparameters (the number of features to try at each
split, and the size of each tree) tuned to minimize the out-of-
sample MSE using the R package RandomForestSRC.47 To test
the performance of the RF model and its predictive power using
our dataset, we divided our data into a 70–30 split, where 70% of
our observed data was used to train the model and the
remaining 30% was used to test the quality of the model
predictions.48,49 Fig. 3 shows regression plots that compare the
out-of-sample predictions of the RF model on the 30% hold-out
data to the actual pollutant levels during the October 07–18,
2021 period. These plots can be used to visually assess the bias
and variance of the RF model. For example, the models for NO2

and O3 have little variance relative to that of PM2.5, with the
predictions for NO2 and O3 being closer to the 1 : 1 lines relative
to those for PM2.5. In contrast, the RF model for NO2 exhibits
the highest bias, with large values being systematically under-
estimated. However, though the datasets used were small, this
did not signicantly undermine the ability of the RF model to
accurately predict pollutant levels, as evident in the large values
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Box andwhisker plot comparisons of pollutant data collected frommultisensor pods for (A–D) Pod 1 and (E–H) Pod 2 duringOctober 20–
November 10, 2020, and October 7–October 18, 2021. Whiskers extend from the 2nd percentile to 98th percentile, illustrating the variation in
each dataset.

Table 2 Quantitative comparisons of averaged pollutant data for the
two-week period for October 20–November 10, 2020, and October
7–October 18, 2021a

Pollutant Median 2020 Median 2021 p-Value calculated

Pod 1
NO2 (ppb) 4.03 4.99 0.00
O3 (ppb) 25.1 20.3 0.00
PM2.5 (mg m−3) 8.36 4.92 0.00
CO (ppb) 319 282 0.00

Pod 2
NO2 (ppb) 3.63 4.77 0.00
O3 (ppb) 22.7 20.8 0.00
PM2.5 (mg m−3) 6.72 4.72 0.00
CO (ppb) 320 277 0.00

a Calculated p-values >0.05 indicate no signicant variations between
the two compared years. Values of 0.00 are in fact very small numbers
<5 � 10−6.

Fig. 3 Hourly averaged regression plots of pollutant data comparing the
the during October 07–18, 2021 period for (A) NO2, (B) O3, and (C) PM2.
The slope and R2 values are calculated from the regression of predicted

© 2022 The Author(s). Published by the Royal Society of Chemistry
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of R2 obtained for NO2, O3, and PM2.5, respectively. These R2

values are similar to those reported in a much larger study50

using a similar methodology. When the RF model was fed with
the combined fall 2020 and 2021 datasets, which increased the
dataset size to 762 from 477 for 2020 and 287 for 2021, the out-
of-sample predictive ability of the model was very similar for O3,
but slightly worse for NO2 and PM2.5 (ESI Fig. S4†). This is
because of a few large values of the pollutant levels for these two
pollutants which the RF model underestimated. Predictions of
the RF model were far superior to those of a multiple linear
regression model trained and tested on the same data (ESI
Table S2†).

Predictions in less clustered areas of the plots in Fig. 3 were
shown to reduce the performance of the model's ability to
predict pollutant levels, which is shown most prominently in
Fig. 3C. This is believed to be caused by twomain factors: (1) the
data presented are below the limit of condence (20 mg m−3 for
PM 2.5, 10 ppb for NO2 and O3) for the sensors. This means that
the data collected below these thresholds cannot be taken with
100% certainty, an assumption that the model does not make
observed dataset with the predicted dataset output by the RFmodel for
5. Data collected from the Pod 2 location. The diagonal is the 1 : 1 line.
onto observed.

Environ. Sci.: Atmos., 2022, 2, 1389–1399 | 1393
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when predicting values, (2) the model was trained with most of
the data having very low concentrations of PM2.5 (<10 mg m−3).
This resulted in greater accuracy when making predictions in
the clusters, and less accuracy in the “scattered” sections (10 mg
m−3 # PM 2.5 # 20 mg m−3). Both factors inuencing the
model's accuracy can be rectied with a dataset exceeding the
limit of condence of the sensor and with a larger dataset to
provide a reference for a wider range of pollutant levels.

Table 3 lists the traffic counts provided by the city of Kitch-
ener near Pods 1 and 2. Results indicate that traffic volume did
not change signicantly (p-value >0.05) between the two years at
the two locations. With that said, for Pod 1 there were cases
when traffic counts were higher in 2021 (when lockdowns were
relaxed) than the 2020 period, and for Pod 2 (located near
a main road), there were instances where the traffic counts were
higher in 2020 than 2021. While evidence from the p-values
alone cannot distinguish these differences from normal day-to-
day variation in traffic ow, upon further examination of the
local context provided by the city of Kitchener, we found that
a construction project had been launched near Pod 2 during the
lockdown in 2020. Hence, the observed counts for 2020 in Table
3 originate from a combination of construction vehicles
traversing through the roadside maintenance site and resi-
dents. This construction project was for the long-term and
evolved as time progressed. In fall 2021, the project expanded to
nearby roads, resulting in certain routes being closed off,
causing vehicles and buses to deviate from their regular routes
via detours, ultimately resulting in missed traffic counts at that
location.

The RF model was used to determine the importance of
meteorological factors and traffic on pollutant concentrations.
Themodel relayed this importance through the calculation of %
IncMSE, where higher percentages indicate a greater impor-
tance attributed to the inuence of the variable under study.39

The %IncMSE are shown for each meteorological and traffic
Table 3 Two-week median hourly traffic counts and statistical
quantification for October 20–November 10, 2020, and October 7–
18, 2021a

Variable Median 2020 Median 2021
p-Value
calculated

Pod 1
Cars 25 29 0.34
Vans/pickups 2 2 1
Buses/trucks 1 1 1
Motorcycles 0 0 1
Total traffic 28 32 0.36

Pod 2
Cars 26 23 0.41
Vans/pickups 3 2 0.65
Buses/trucks 3 3 1
Motorcycles 0 0 1
Total traffic 32 29 0.44

a Calculated p-values >0.05 indicate no signicant variations between
the two compared years. Variations in the total counts are attributed
to rounding medians to whole numbers.
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variable for years 2020 and 2021 on each pollutant concentra-
tion for Pod 1 in Fig. 4 and Pod 2 in ESI Fig. S5.† Also displayed
are 95% condence intervals for %IncMSE.51 Both pod locations
used in this study showed several similarities. For example,
large values of %IncMSE oen come with the largest 95%
condence intervals, and these error bars are usually skewed
towards lower values. This is because %IncMSE is very sensitive
to how well the RF model performs on the extreme observations
it has most difficulty predicting. Therefore, large values of %
IncMSE can oen be due to a handful of extreme values.
However, since the error bars are obtained via subsampling,51

these extreme values becomemuch harder to predict, leading to
a drop in %IncMSE. While the sample sizes obtained were
sufficiently large to justify the calculation of error bars via
subsampling,51 the asymmetry issue is mitigated with larger
sample sizes, thus underscoring the need to obtain larger
datasets in future studies. Accounting for only the statistically
signicant %IncMSE values (those with error bars above zero),
Fig. 4 shows that the most important meteorological variables
are temperature, relative humidity, pressure, and solar irradi-
ance. This result seems to be in line with the literature
review,52,53 where both temperature and pressure play a signi-
cant role in facilitating the formation of secondary pollutants.

Fig. 4A and B show the calculated %IncMSE for NO2 in fall
2020 and 2021, respectively for Pod 1. There were signicant
variations in meteorological values between the two years as
shown in Table 1, and hence they remain the dominant vari-
ables affecting NO2 levels. However, aside from temperature,
the only statistically signicant %IncMSE values are for total
traffic and cars. While the %IncMSE value for these traffic
variables is small compared to that of pressure, relative
humidity, and wind speed, the fact that the error bars are also
small and above zero indicates that the inuence of these
variables is not merely driven by predictions on a handful of
extreme observations, as the large error bars on the aforemen-
tionedmeteorological variables would suggest. Also, for the NO2

data, the %IncMSE calculated for solar radiation was very close
to those calculated for traffic-related variables in Fig. 4 and ESI
Fig. S5.† This observation is likely due to the inuence of solar
radiation on the photochemical decomposition of NO2 to form
nitric oxide and free oxygen radicals,34,54 the latter of which goes
on to form O3.55

Fig. 4C and D show the calculated %IncMSE for each mete-
orological and traffic-related variable to assess its importance
for O3 levels recorded by Pod 1 in fall 2020 and 2021, respec-
tively. It appears that O3 levels are mainly dependent on mete-
orology, namely relative humidity, solar radiation, and
pressure. Asmentioned earlier, the formation of ground level O3

is mainly driven by the photochemical decomposition and
reaction of NO2 and VOCs.20,54,55 As for %IncMSE values for Pod
2 (Fig. S5†), the only signicant meteorological variable for
predicting O3 is solar radiation. For the traffic variables, small
but statistically signicant %IncMSE values for total traffic,
cars, and buses/trucks are found in Pod 1, and buses/trucks in
Pod 2, again suggesting that the importance metric for these
variables is not merely driven by a handful of extreme
observations.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Variable importance plots comparing the calculated %IncMSE at the Pod 1 location for NO2 (A and B), O3 (C and D), PM2.5 (E and F), and
CO (G and H). Symbols represent the estimate values and error bars, the 95% confidence intervals. Statistically significant and non-significant %
IncMSE values have thick/dark and thin/light error bars, respectively.
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Fig. 4E and F show the calculated %IncMSE for each mete-
orological and traffic-related variable to assess its importance in
predicting PM2.5 levels recorded by Pod 1 in fall 2020 and 2021,
respectively. In this case, the most signicant meteorological
variable by %IncMSE is temperature. However, this result does
© 2022 The Author(s). Published by the Royal Society of Chemistry
not mean that temperature is the only variable responsible for
the elevated levels of PM2.5, but rather interacts with one or
more other variables to have a synergetic effect on the measured
data. PM2.5 has primary and secondary sources (see Introduc-
tion above), where vehicles emit PM2.5 from the incomplete
Environ. Sci.: Atmos., 2022, 2, 1389–1399 | 1395
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combustion of fuel, and the precursors, namely VOCs, react in
the atmosphere to form ne particulates. Furthermore, the
chemical and physical properties of these particulates are
inuenced by relative humidity,56 which has a statistically
signicant value of %IncMSE at Pod 2 in 2021 (Fig. S5†). While
total traffic is signicant at Pod 1 in 2020 and cars are signi-
cant at Pod 2 in 2021, it remains unclear as to how inuential
traffic variables are on the measured values of PM2.5. Addi-
tional studies using different time periods are needed prior to
making any denite conclusions.

Fig. 4G and H show the calculated %IncMSE for each
meteorological and traffic-related variable to assess its impor-
tance in predicting CO levels recorded by Pod 1 in fall 2020 and
2021, respectively. Carbon monoxide is directly emitted from
the combustion of fuel from vehicles much like NO, a precursor
to NO2.57,58 This pollutant is relatively short-lived in the atmo-
sphere and participates in atmospheric reactions to form CO2.
The lower CO levels in fall 2021 relative to 2020 listed in Table 2
suggest additional sinks for CO becoming important such as
reactions with hydroxyl radical,12,13 which in the presence of
light and NOx can lead to O3 formation. An interesting obser-
vation in Fig. 4G and H is that %IncMSE for total traffic and cars
is larger and more signicant in 2021 than 2020. However, this
is not due to a statistically signicant increase in the corre-
sponding traffic counts, according to the p-value calculation of
Table 3. Rather, it is due to the fact that CO has far more
extreme values in 2020 than 2021 (Fig. 2D). To explain this in
more detail, ESI Fig. S6† plots the CO measurements against
total traffic and car counts for 2020 and 2021. Also pictured in
each plot is the LOESS curve of the RF model predictions
against the given variable. In Fig. S6I and M† (Pod 1, 2020),
there are several extreme values of CO (around 25 total traffic
and 20 car counts, respectively) which are far above the LOESS
curve. Those extreme values still exist in Fig. S6J and N† (Pod 1,
2021), but they are much closer to the LOESS curve. Thus, the
predictions attributable to these traffic variables were better in
2021 than 2020, hence the larger %IncMSE. More interesting
still is that the story in Pod 2 is essentially reversed. That is, cars
drop signicantly in %IncMSE from 2020 to 2021. At rst, it
might seem that it is due to changes in important meteoro-
logical variables between 2020 and 2021 such as temperature
and wind speed, which affect the relative importance of cars. A
more fulsome explanation is offered by Fig. S6.†Once again, the
extreme values of CO are much closer to the LOESS curves in
2021 than 2020, as shown when comparing Fig. S6L and P to K
and O, respectively.† This explains the increase in %IncMSE for
temperature. However, %IncMSE is a combined measure of
distance from the mean trend and departure of the mean trend
from zero (if the mean trend of a variable is zero, then it cannot
have a predictive effect on the outcome). Thus, for cars and
wind speed, it appears that the smaller distances from the
LOESS curve in 2021 are offset by the larger variation in the
curve in 2020, resulting in an overall decrease in %IncMSE.
Additional studies during high pollution events where traffic
counts are more varied between the periods of study are needed
to better understand the signicance of traffic on CO levels.
1396 | Environ. Sci.: Atmos., 2022, 2, 1389–1399
A recent study50 conducted in Los Angeles used a similar RF
model to quantify the impacts that TRAP and meteorology have
on pollutant levels during the early days of the COVID-19
lockdown period. This RF model was more comprehensive,
and included higher specicity for vehicle types, fuel used,
miles travelled, etc. The results highlighted that pollutant levels
showed a signicant decline during the studied period
compared to previous years. Furthermore, “heavy-duty trucks”,
or vehicles used to transport resources, were the biggest
contributor to pollutant levels during the lockdown period.
When comparing this study, which took place in a large city, to
the ndings presented here (a medium-sized city), there was
some overlap in the ndings: (1) traffic appears to play a statis-
tically signicant role in the levels of NO2, O3, and PM2.5, and
(2) meteorology has the biggest inuence on all pollutants,
evident in the high ranking of importance for its variables in
both studies. While direct variable importance rankings are not
possible since the Los Angeles study used a different impor-
tance metric from ours, the main methodological difference
between our studies is that ours computes the statistical
signicance (via error bars containing zero) on the variable
importance metric, whereas the Los Angeles study does not.
This allowed us to conclude that even the relatively small %
IncMSE for several traffic variables was statistically signicant,
whereas much large %IncMSE values for a number of meteo-
rological variables was not. Upon taking statistical signicance
into account, our study found that traffic variables had a more
discernible inuence than many meteorological variables,
whereas in the Los Angeles study, based on the magnitude of
variable importance metrics alone, the meteorological variables
were almost always the dominant factors for predicting
pollutant levels.

4. Summary and implications

The use of machine learning algorithms on meteorology and
traffic datasets allowed for a comprehensive assessment of
which factors impact pollutant levels. Meteorological variables
were found to be the most inuential variables on pollutant
levels, with a number of traffic variables having smaller but
statistically signicant inuences as well. There were statisti-
cally signicant differences in the meteorological variables
between the two years studied (Table 1), but no such signicant
differences between traffic counts (Table 3). The latter nding
precludes any assessment of the effect of lockdowns on
pollutant concentrations as a direct result of changes in traffic
counts. However, upon taking statistical signicance into
account when assessing relative importance of variables
affecting pollutant levels, our study found that traffic variables
had a more discernible inuence than many meteorological
variables. While the small sample size did not seriously
undermine the accuracy of the RF model (Fig. 3 and ESI Table
S2†), it did lead to large error bars on the variable importance
metrics (Fig. 4 and ESI Fig. S5†). For this reason, it is difficult to
draw any denite conclusions from this study alone. Additional
studies with a larger traffic dataset and spread throughout the
year are needed to expand upon these initial conclusions.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Machine learning algorithms offer a new way to analyze air
pollution data in relation to meteorology and traffic. Scaling up
the project presented here would be feasible, as the computa-
tional power required to run the machine learning code and p-
value calculations is fairly low. Future studies with traffic data
that run over a longer time frame would be benecial and could
be used to predict pollution levels based on changes to meteo-
rological and traffic data. Additionally, a larger dataset will not
only improve the accuracy of the model but also allow for more
denite conclusions to be made regarding pollutants and vari-
able metrics that hover near the statistical signicance
threshold. The analysis presented here also examines the
contrast between the variables that inuence air quality in large
and mid-size cities. This contrast suggests that local contexts
matter in draing bylaws and regulations to lower emissions
and minimize exposure of citizens to air pollutants. Electrifying
the transport system in mid-size cities experiencing population
growth would ensure that TRAP would have lower importance
than meteorology. Continuous monitoring is highly recom-
mended for regular assessment of seasonal and human
inuences.
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