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We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles

undergoing a motility-induced phase separation (MIPS) to investigate the system’s critical behaviour close

to the critical point of the MIPS curve. By sampling steady-state configurations for large system sizes and

performing finite size scaling analysis we provide exhaustive evidence that the critical behaviour of this
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active system belongs to the Ising universality class. In addition to the scaling observables that are also
typical of passive systems, we study the critical behaviour of the kinetic temperature difference between
the two active phases. This quantity, which is always zero in equilibrium, displays instead a critical behavior

in the active system which is well described by the same exponent of the order parameter in agreement

rsc.li/soft-matter-journal with mean-field theory.

Introduction

One of the pillars of statistical physics is the concept of univer-
sality in critical phenomena. In equilibrium systems, close to a
second-order phase transition, universality can be ultimately
attributed to the divergence of the correlation length of the order
parameter. The behavior of this growing length-scale is found to
be independent of the microscopic details of the systems but is
determined only by few specific features, i.e. the spatial dimen-
sionality and the symmetries of the order parameter as firstly
hypothesized by Kadanoff." Depending on these parameters it is
possible to trace back the critical behaviour of disparate systems
within few groups, called universality classes.

One of the biggest challenges of recent years is to transfer
the vast knowledge acquired on the universal behaviour of
equilibrium systems into active matter physics. Active matter
represents a peculiar class of non-equilibrium systems where
the elementary units or agents are self-propelled objects capable
of converting energy into systematic movement.>? The interacting
agents are often complex biological objects that exhibit self-
organized behavior on large scales giving rise to many diverse
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living materials.* In particular, self-propulsion can trigger a feed-
back between motility and local density causing an effective
attractive interaction between active particles.” This attractive
force can cause a phase separation in active fluids, remarkably
similar to the gas-liquid coexistence in equilibrium systems,
which is called Motility-Induced Phase Separation (MIPS).® Since
MIPS is a very general feature of active dynamics it might play a
role also in biological systems. For instance, it has been recently
observed that multicellular aggregates of Myxococcus xanthus might
take advantage of density-motility feedback for developing large
scale collective behaviors that have been well described by MIPS.”

In equilibrium physics the standard gas-liquid coexistence
ends with a critical point that belongs to the Ising universality
class.®® A natural question is whether or not the MIPS curve
ends in a critical point and whether there is a region close to
phase separation in which the active critical behaviour can be
traced back to a specific universality class. Effective equilibrium
approaches,'®'" and field-theoretic computations'? have previously
pointed to the Ising universality class. Concerning numerical simula-
tions, although numerous works have addressed the properties
of phase-separated MIPS states,"*° the study of the critical
region and the determination of the critical properties still
remains challenging and controversial. In particular it has been
shown that active Brownian particles in two-dimensions (2d)
display some critical exponents deviating considerably from the
Ising ones.”' Differently on-lattice simulations of an active
model have shown results in agreement with the Ising univer-
sality class'* and suggested that off-lattice simulations have been
performed far from the scaling regime due to the small size of
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the systems. However, more recent simulations of the same
lattice model have shown a deviation of the order parameter
exponent from the Ising value.** Since it is not a priori clear if
these models lie in the same universality class, one must rely on
large-scale computer simulations which are often a necessary
tool to understand possible discrepancies between off-lattice and
on-lattice critical exponents. This has been the case, for example,
for Heisenberg fluids at equilibrium.>*>*

In this work, we report results of large-scale off-lattice simula-
tions of Active Ornstein-Uhlenbeck Particles (AOUPs) at criticality.
Performing Finite-Size-Scaling (FSS) analysis, we show that the
system’s critical exponents agree with the Ising universality class.
We also show that the kinetic temperature difference between the
two phases, emerging at criticality, displays a critical behavior
which is well described by the exponent of the order parameter in
agreement with mean-field theory combined with a small-t expan-
sion of the AOUPs model.

Model and methods

We consider a system composed of N self-propelled AOUP
particles in 2d.>>*® This model is perhaps the simplest active
particle model (due to the linearity of the process producing the
“active noise”) which has led to numerous novel theoretical
developments.'*”*! It has been shown®’ that AOUPs exhibit MIPS
for large values of the persistence time of the activity, as also
displayed in Fig. 1(a-d). The equations of motion of AOUPs read

;= p(; + Fy) 1)

W=+ )

where r; indicates the i-th particle position, ¥; is the self-

propulsion force, and F; = Y f;; is the conservative force acting
J#EI

on the particle. We consider two-body interactions, ie., f; =

—V.ip(ry), with r; = |r; — 1;] and we use a simple inverse power-

law potential ¢(r) = (r/o) '>/12 with a cut-off at r = 2.50.

Here ¢ represents the diameter of the particle and is set to 1.

N=7500 (t=16.5) N=15x103

N=30x103

Fig. 1
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In eqn (2) 7 is the persistence time of the active force and # is a
standard white noise source, ie. (ni(f)) = 0 and

D
<;1j¥(t)r1f (s)> = 2;6;,51/;6(1 — 5), where the greek indices indicate

Cartesian components. Here D is the diffusivity of the non-
interacting particles and u is the particles mobility (set to one in
simulations). In the absence of deterministic forces eqn (1) and (2)
yield**** (i*) = 2v” = 2DJx, allowing to express the diffusivity as
D =1, ie as function of v which is the (axial) free root-mean-
squared velocity. In all simulations we fixv = 1 and increase 7 from
small to large values to observe the transition as shown by the
schematic phase diagram in Fig. 1(e). Eqn (1) and (2) have been
integrated numerically using the Euler scheme with a time step
At =107 up to N, = 10° time steps for the largest system size
which is adequate to observe full relaxation of the density auto-
correlation function as shown in the ESL{ In addition we start
each simulation from a random initial configuration and we
perform up to N, = 10°® preparation steps which guarantee that
all runs reach the steady-state, even close to the critical point. We
perform averages over several independent runs and errors
reported represent twice the standard error of the mean (see the
ESIt for details on the error estimation).

The active particles move in a rectangular box of size L, x L,
with a 1:3 ratio (L, = 3L,) and periodic boundary conditions. The
simulated system sizes are N = (7.5, 15, 30, 60) x 10> To avoid
spurious effects due to the presence of an interface®** we compute
the quantities of interest only in four sub-boxes of size L = L,/2
centered on the dense and dilute phases. These boxes are located at
x=Ly2 + L/4 and aty = L,/2 £ L,/4. To ensure that these positions
coincide with the locations of the dense and dilute phases, as in
ref. 21, for each configuration we first find the center of mass of the
system along x (with periodic boundaries®), and we shift all
particles so that the x-coordinate of the center of mass coincides
with x = 3L,/4 as shown in Fig. 1(d). We stress that the method
also works at the critical point if the two phases are distinguish-
able enough. This is typically the case when the critical order
parameter distribution shows two peaks as in many Ising®® and
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(a—d) Smoothed density field in a rectangular geometry for four active systems of different sizes at © = 16.5 (where phase separation becomes

appreciable). The color map encodes the local density value from yellow (high density) to blue (low density). The configurations have been shifted so that
the dense and dilute phases are centered onto the four sub-boxes (panel (d)) considered in the analysis. The average density in the right sub-boxes is

denoted by p, (the density of the high-density phase), while the average

density of the left sub-boxes by p, (low-density). (e) Coexistence curve

constructed with the densities of the dense and dilute phases (filled data-points), the estimated critical point is shown as an open circle.
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Lennard-Jones systems.”” This technique has been successfully
applied to the 2d Ising model®" and to the lattice active model."

All simulations are performed at a fixed density p = 0.95 by
varying accordingly the box size L, = 3L, = (3N/p)"*. This value
approximately corresponds to the critical density estimated for
the smallest investigated system size, which is found to be p. =
0.953(0.037) (errors from fit are given in brackets, see the ESIT
for details on the estimation of p.).

Results

Although finite systems cannot develop any diverging correla-
tion length, the finite-size scaling hypothesis allows us to
systematically study the critical properties away from the ther-
modynamic limit.*® Using the finite-size scaling ansatz, we
assume that a generic observable ¢/ near the critical point

behaves as O = L%o [Fo(LE™) + O(L™2, )], where (4 is the
critical exponent associated with the observable ¢, F, is a
universal finite-size scaling function and o is the power of
the (subleading) correction-to-scaling exponent.*® Here v is the
exponent associated with the divergence of the correlation
length ¢ as the control parameter is varied across the transition.
In our active particle system the relaxation time of the noise 7 is
the control parameter, therefore we assume ¢ ~ (v — 7.) "
Using this and ignoring sub-leading corrections we get
O = L*"Go(L"(x — 1)) (where G, is a universal scaling func-
tion). This implies that, if the correct ., v and (¢ are known, all
values of (® measured for different sizes should collapse onto
each other when L™ °“"( is plotted as a function of L'*(t — t.).
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A particularly interesting observable is the fourth order
cumulant of density fluctuations (Ap®)?/(Ap*) (the Binder
parameter®® '), where brackets indicate averages over config-
urations and over sub-boxes. The density fluctuations are
computed in the four L x L sub-boxes described above, speci-
fically (Ap®) = ((No/L*> — (Np/L*))?) where N, is the number of
particles found in one single sub-box. For the Binder parameter
we expect {» = 0 and thus it should be size-independent at t = 7.

Exploiting this property we locate . = 16.361(0.058) and % =
[(Ap?)*/(Ap")]e=., = 0.781(0.017) as the intersection of the data
for N =15 x 10° and N = 60 x 10> (Fig. 2(a)). We chose to use
these two sizes because N = 60 x 10 is the largest simulated
size and N = 15 x 10® is two times smaller in linear size. The
estimated value of % = 0.781(0.017) is lower than the corres-
ponding value found in the triangular lattice gas (# =
0.8321(0.0023), see the ESIt for discussion on the triangular
lattice), but it is close to that found in the active lattice model*?
(# ~ 0.75). Note that 7. = 16.36 is approximately the value at
which cumulants of all sizes cross as shown in the inset of
Fig. 2(a) where we report a magnification of the main panel in a
small t-interval around 7. (see the ESIt for a systematic study of
the crossing points). Fig. 2(b) shows a good data collapse of the
cumulant data-points with the Ising exponent v = 1. A direct
way*! to determine v is to consider the size dependence of the
slope of the cumulants at t = 7., this method yields v = 1.03(0.10)
as shown in the ESL ¥

Next we test the scaling of the susceptibility y = (N, —
(Np))*)/{Np) (shown in Fig. 2(c)). Fig. 2(d) shows that the scaling
is very good using the Ising critical exponent y = 7/4. In the ESI{
we also show that if we fit directly the size-dependent values of
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Fig. 2 FSS analysis. (a) Binder parameter for different system sizes. The intersection of the curves allows locating . (vertical line). The inset shows a
magnification of a small region close to 1. (i.e. |t — 1c|/1c < 0.1), where the straight black lines indicate the crossing point of N = 15 x 10%and N = 60 x 10°
determining the critical point; (b) collapse of data in (a) as a function of the scaling variable (r — tJJLY” with v = 1; (c) susceptibility y as a function of  for
different system sizes; (d) collapse of data in (c) onto a universal scaling function with the exponents y = 7/4 and v = 1; (e) order parameter for different
system sizes; (f) collapse of data in (e) with the exponents f# = 1/8 and v = 1. The color code is the same for all panels (see legend in (a)).
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Fig. 3 Static structure factor S(k) computed in the dilute phase for the
largest system (N = 60 x 10%). Different colors refer to different values of
7 (see the legend). Approaching the critical point the structure factor is well
fitted by a power law S(k) ~ k=2*" at low k with 5 = 1/4 (full line). The best fit
with S(k) ~ k=2 (mean-field) is also shown as a dashed line for comparison.

% at 7., we obtain y = 1.84(0.20) which is compatible with the
Ising y. Note also that the y in Fig. 2(c) does not show the typical
peak as in the Ising model. This is due to the fact that the y is
obtained here by averaging the values of N}, in both the dense
and dilute phases. In the ESIT we show that the y (computed in
the same way) for the lattice gas displays a similar s-shaped
curve as a function of the inverse temperature and scales with
y = 7/4. Furthermore, in Fig. 2(e) we consider the density
difference between the boxes centered in the high and low-
density phases (p, — p1) (see Fig. 1(d)), which corresponds to
the order parameter of the system. Note that this quantity is on
average greater than zero since, even in the homogeneous
phase, since the density around the center of mass for a given
configuration is expected to be larger than the density in the
low-density sub-boxes. We find that this quantity displays a
good scaling with the Ising exponent f# = 1/8 = 0.125 (Fig. 2(f)). It
is worth stressing that in the thermodynamic limit, the order
parameter would be different from zero only for t > t.. It is,
however, expected that for finite systems, a smooth variation of
the order parameter could also be found below 7. and that this
should scale with the appropriate exponent. We have also
checked that (py, — p;), computed as in the active system, scales
with f = 0.125 in the case of the 2d equilibrium lattice gas for
temperatures above the critical temperature (see the ESI{ for
details). A direct fit of the size-dependent critical (py, — p;) gives
f = 0.113(0.055), which is compatible with the Ising f. To
improve the accuracy of the S estimate we apply a finer
technique finding the value of the exponent which optimizes
the data collapse (see the ESIt for details on f estimation). This
yields f = 0.133(0.022).

Next we test if our results are consistent with the Ising
exponent 1 = 1/4 which controls the decay of the static structure
factor S(k) near the critical point, i.e. S(k) ~ k~>". To this aim
we compute S(k) = A(p;p;) where p; is the Fourier transform
of the density fluctuations and the normalization factor A is
chosen so that S(0) = (AN,*)/(N,). To avoid the interface and
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Fig. 4 (a) Kinetic temperature difference between the dilute and dense

phases plotted as a function of 7 (different colors indicate different system
sizes, legends are the same as Fig. 2(a)). (b) Data of (a) scaled with the
exponents v =1and k = f = 1/8.

focus only on the bulk phase we compute the S(k) for particles in
the dilute phase considering only those particles having |x — L./4|
< L/2, i.e. all particles in the left sub-boxes in Fig. 1(d). As shown
in Fig. 3 the resulting S(k) close to criticality becomes fairly linear
in the double log scale at low k. The data at low k are well fitted by
the power law &k >*" with 5 = 1/4 (full line) which is appreciably
different from the mean-field decay S(k) ~ k> (dashed line).
A direct power-law fit of these points gives 2 — 5 = 1.709(0.090)
and 5 = 0.290(0.090) which are compatible with the Ising values
2 — 5 =175 and 5 = 0.25.

Up to this point, we have discussed quantities which display
a critical behavior also in equilibrium fluids. We now show an
observable that is zero in equilibrium while it exhibits a
singular behavior in the active case. Since in active systems
the instantaneous velocities are coupled to positions,>” when-
ever MIPS occurs, dense regions of slow particles coexist with
dilute regions of fast ones.”® We then consider the average
squared speed of particles in the dense and dilute sub-boxes
that we indicate, respectively, with (|i|*);, and (|f|?).. The

quantity AT = %(<\f|2>1—<|f|2>h) can be seen as the (effective)

kinetic temperature difference between the two phases and its
behavior is shown in Fig. 4(a). As expected AT decreases, as the
two phases progressively mix upon lowering t. By combining
mean-field theory with a small-t approximation of the AOUP model
we have derived the scaling AT ~ (t — 7.)° (see Appendix A).
Moreover these approximations lead to the identification of the
exponent x of AT with the exponent 8 of the order parameter.
Indeed we find a good data collapse for AT if we use the
exponents x = f§ = 1/8 and v = 1 (Fig. 4(b)). A direct estimate of
the exponent gives x = 0.122(0.022) satisfying x = § within the
errors (see the ESIt for details).

Conclusions

In this article, we have studied the critical properties of an
active system undergoing MIPS in two spatial dimensions.
Performing large-scale numerical simulations on GPU we have

This journal is © The Royal Society of Chemistry 2021
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demonstrated that the critical behavior of the system agrees well
with the Ising universality class. The importance of simulating
large system sizes is worth stressing since previous studies on
ABPs have reported different values of the critical exponents.>*
Although it has been speculated'” that the limited sizes
employed did not allow the observation of the scaling regime,
it is true that similar sizes have been exploited for the study of
critical passive attractive liquids, providing numerical results
compatible with the Ising universality class.** We instead suspect
that for those sizes another correlation length, different from the
critical one, may interfere with the scaling behaviour of the active
system. A recent work*> has shown that the dense phase formed
by active particles undergoing MIPS is made of a mosaic of hexatic
micro-domains. We find that, at the critical point, the hexatic
correlation length is comparable with the size of the sub-boxes
employed for the FSS analysis when the system is small (N = 3750),
justifying the choice of larger system sizes (see the ESIt for
discussion). Indeed for a size as small as N = 3750 we find that
the crossing point of the Binder cumulant is observed at quite low
values, although a reasonable scaling is found. Although we
expect that the microscopic dynamical details of the model (ABPs
or AOUPs) should not affect the universality class of the system,
large-scale simulations of critical ABPs are necessary to further
clarify this issue.

Our large-scale simulation results are also consistent with
recent works taking into account non-integrable active terms in
a field-theoretical framework.*® These models, in some parameter
range, may show micro-phase separation instead of a full MIPS
and must be included in a different (non-Ising) universality class.
Differently when parameters allow for a full MIPS the extra terms
in these active field-theories are irrelevant (in a renormalization
group sense) and the system belongs to the Ising universality class.
On the other hand, far from criticality, these non-equilibrium
contributions could produce significant differences with respect to
an equilibrium gas-liquid phase separation.’***™*” Within this
context it would be interesting to understand how one could make
the active critical point unstable® by altering the microscopic
interactions and/or the dynamics.
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Appendix A
Derivation of the exponent identity x =

To derive the exponent identity k = f§ we considered an AOU
particle in d = 1 and subjected it to an external potential @(x). It
is known®**® that for small 7 the velocity distribution of the

particle is a zero-centered Gaussian with variance
() = v =@ (x) + O(7?) (A1)

to first order in 1. Here v* = D/t is the free particle mean square
velocity (which is assumed to remain constant as in our
simulations) and @"(x) = d,.®(x) is the potential curvature.

This journal is © The Royal Society of Chemistry 2021
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We now assume that the total potential curvature & experi-

enced by the probe particle in x is generated by the interactions

with other particles: " (x) = > ¢"(x — x;), where ¢”"(x — x;) is
i

the second derivative of the pair interaction potential. This can

be rewritten as @ (x) = [dx'p(x')¢" (x — x’) where the integral

extends over all space, and we have introduced the density field

p(x) =>0(x — x;). By ignoring density fluctuations (mean-
1

field approximation) we set p(x) = p = constant and we obtain
@"(x) = ¢,p, where ¢, = [dx'¢"(x — x’) is the mean potential
curvature which is assumed to be positive. By using this in
eqn (1) and neglecting higher order corrections we get (¥*) =
V(1 — td,p). We now consider the difference between the
averaged squared speed in the low and high density phases,

-1 1, -
ie. AT = §(<x2>17<x2>h) = ivzrqﬁz(ph — py). If we now assume
that (p, — p1) ~ (t — 1)’ near the critical point we have:

AT ~ (1 — o) (A.2)

with k = 8, which is the relation verified by the simulation data
within errors. The derivation of this identity can be easily
generalized to higher dimensions leading to the same result.

Acknowledgements

MP acknowledges financial support from the H2020 program
and from the Secretary of Universities and Research of the
Government of Catalonia through Beatriu de Pinds program
Grant No. 2018 BP 00088.

References

1 L. Kadanoff, Critical behavior, universality and scaling in
critical phenomena, 1971.

2 M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys., 2013, 85,
1143-1189.

3 C. Bechinger, R. Di Leonardo, H. Léwen, C. Reichhardt,
G. Volpe and G. Volpe, Rev. Mod. Phys., 2016, 88, 045006.

4 A. Klopper, Nat. Phys., 2018, 14, 645.

5 J. Tailleur and M. E. Cates, Phys. Rev. Lett.,, 2008,
100, 218103.

6 M. E. Cates and ]. Tailleur, Annu. Rev. Condens. Matter Phys.,
2015, 6, 219-244.

7 G. Liu, A. Patch, F. Bahar, D. Yllanes, R. D. Welch,
M. C. Marchetti, S. Thutupalli and J. W. Shaevitz, Phys.
Rev. Lett., 2019, 122, 248102.

8 H. B. Callen, Thermodynamics and an Introduction to Thermo-
statistics, 1998.

9 C. Domb, Phase transitions and critical phenomena, Elsevier,
2000.

10 M. Paoluzzi, C. Maggi and A. Crisanti, Phys. Rev. Res., 2020,
2, 023207.

11 M. Paoluzzi, C. Maggi, U. Marini Bettolo Marconi and
N. Gnan, Phys. Rev. E, 2016, 94, 052602.

Soft Matter, 2021,17, 3807-3812 | 3811


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm02162h

Open Access Article. Published on 10 2021. Downloaded on 25/10/25 10:37:10.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

12
13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29
30

B. Partridge and C. F. Lee, Phys. Rev. Lett., 2019, 123, 068002.
J. Stenhammar, D. Marenduzzo, R. J. Allen and M. E. Cates,
Soft Matter, 2014, 10, 1489-1499.

A. Patch, D. Yllanes and M. C. Marchetti, Phys. Rev. E, 2017,
95, 012601.

Y. Fily and M. C. Marchetti, Phys. Rev. Lett.,, 2012,
108, 235702.

D. Levis, J. Codina and I. Pagonabarraga, Soft Matter, 2017,
13, 8113-81109.

A. Patch, D. M. Sussman, D. Yllanes and M. C. Marchetti,
Soft Matter, 2018, 14, 7435-7445.

S. Hermann, P. Krinninger, D. de las Heras and M. Schmidt,
Phys. Rev. E, 2019, 100, 052604.

P. Digregorio, D. Levis, A. Suma, L. F. Cugliandolo,
G. Gonnella and 1. Pagonabarraga, Phys. Rev. Lett., 2018,
121, 098003.

S. Mandal, B. Liebchen and H. Léwen, Phys. Rev. Lett., 2019,
123, 228001.

J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck and
P. Virnau, Phys. Rev. E, 2018, 98, 030601.

F. Dittrich, T. Speck and P. Virnau, 2020, arXiv preprint
arXiv:2010.08387.

M. Nijmeijer and J. Weis, Phys. Rev. Lett., 1995, 75, 2887.
I. Mryglod, I. Omelyan and R. Folk, Phys. Rev. Lett., 2001,
86, 3156.

C. Maggi, U. M. B. Marconi, N. Gnan and R. Di Leonardo,
Sci. Rep., 2015, 5, 10742.

G. Szamel, E. Flenner and L. Berthier, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2015, 91, 062304.

E. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco and
F. van Wijland, Phys. Rev. Lett., 2016, 117, 038103.

S. Dal Cengio, D. Levis and 1. Pagonabarraga, Phys. Rev.
Lett., 2019, 123, 238003.

L. L. Bonilla, Phys. Rev. E, 2019, 100, 022601.

R. Wittmann, U. M. B. Marconi, C. Maggi and ]J. M. Brader,
J. Stat. Mech.: Theory Exp., 2017, 2017, 113208.

3812 | Soft Matter, 2021, 17, 3807-3812

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46
47

48

View Article Online

Soft Matter

U. M. B. Marconi, M. Paoluzzi and C. Maggi, Mol. Phys.,
2016, 114, 2400-2410.

G. Szamel, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2014, 90, 012111.

U. M. B. Marconi, N. Gnan, M. Paoluzzi, C. Maggi and
R. Di Leonardo, Sci. Rep., 2016, 6, 23297.

M. Rovere, P. Nielaba and K. Binder, Z. Phys. B: Condens.
Matter, 1993, 90, 215-228.

L. Bai and D. Breen, J. Graph. Tools, 2008, 13, 53-60.

J. A. Plascak and P. Martins, Comput. Phys. Commun., 2013,
184, 259-269.

J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys., 1998,
109, 10914-10920.

D. J. Amit and V. Martin-Mayor, Field Theory, the Renorma-
lization Group, and Critical Phenomena: Graphs to Computers
Third Edition, World Scientific Publishing Company, 2005.
K. Binder, Z. Phys. B: Condens. Matter, 1981, 43, 119-140.
M. Rovere, D. Hermann and K. Binder, Europhys. Lett., 1988,
6, 585.

M. Rovere, D. W. Heermann and K. Binder, J. Phys.: Con-
dens. Matter, 1990, 2, 7009.

C. B. Caporusso, P. Digregorio, D. Levis, L. F. Cugliandolo
and G. Gonnella, 2020, arXiv preprint arXiv:2005.06893.

F. Caballero, C. Nardini and M. E. Cates, J. Stat. Mech.:
Theory Exp., 2018, 2018, 123208.

R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen,
D. Marenduzzo and M. E. Cates, Nat. Commun., 2014,
5, 4351.

C. Nardini, E. Fodor, E. Tjhung, F. Van Wijland, J. Tailleur
and M. E. Cates, Phys. Rev. X, 2017, 7, 021007.

R. Singh and M. E. Cates, Phys. Rev. Lett., 2019, 123, 148005.
E. Tjhung, C. Nardini and M. E. Cates, Phys. Rev. X, 2018,
8, 031080.

D. Martin, J. O’'Byrne, M. E. Cates, E. Fodor, C. Nardini,
J. Tailleur and F. van Wijland, 2020, arXiv preprint
arXiv:2008.12972.

This journal is © The Royal Society of Chemistry 2021


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm02162h



