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1-(Hetero)aryl-2,2,2-trichloroethanols are useful key intermediates for the synthesis of various bioactive

compounds. Herein, we describe N-heterocyclic carbene (NHC)-coordinated cyclometallated palladium
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complex (CYP)-catalyzed (hetero)aryl addition of chloral hydrate using (hetero)arylboroxines, providing

a new approach to 1-(hetero)aryl-2,2,2-trichloroethanols. Notably, PhS-IPent-CYP which coordinated
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Introduction

1-(Hetero)aryl-2,2,2-trichloroethanols are one of the most useful
building blocks for the synthesis of bioactive compounds,*
because the carbinol moiety is easily transformed to various a-
substituted carboxylic acid derivatives.® So far, 1-(hetero)aryl-
2,2,2-trichloroethanols have two kinds of possible synthetic
routes as depicted in Scheme 1. One is an addition of the tri-
chloromethyl anion to carbonyl compounds such as aldehydes
or ketones (i).” This way has generally needed the use of toxic
trichloromethyl anion sources such as chloroform and tri-
chloroacetic acid. The other is an addition of moisture-sensitive
organometallic  reagents such as organomagnesium
compounds to dehydrated chloral (ii).?

The transition metal-catalyzed 1,2-addition of organo-
boronic acids and their derivatives to carbonyl compounds is
a convenient method compared to the Grignard reaction,
because this could be conducted in the presence of water.’
Although several research groups have reported the Rh-
catalyzed 1,2-addition of arylboronic acids to trifluoromethyl
ketones,' the transition metal-catalyzed addition of arylboron
compounds to trichloromethyl carbonyl compounds such as
chloral have not been examined yet. It is well known that N-
heterocyclic ~carbenes (NHC) coordinated palladium
complexes are useful for various applications such as
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the bulky yet flexible 2,6-di(pentan-3-yl)aniline (IPent)-based NHC showed good catalytic activities and
promoted the transformation in 24-97% yields.

anticancer drugs, OLEDs and catalysts."* Recently, we have
developed the NHC coordinated cyclometallated palladium
complexes (CYPs) that catalyzed the 1,2-addition of organo-
boron compounds to a wide range of carbonyl compounds
including hemiacetals such as aqueous formaldehyde and
glyoxylate hemiacetals (Scheme 2).** Therefore, we envisaged
that the NHC-CYPs exhibit a good catalytic activity of the
addition of arylboron compounds to chloral hydrate without
a dehydration process. Here, we report the direct aryl addition
to chloral hydrate with triarylboroxines using NHC-CYPs as
a catalyst.

Results and discussion

At first, we examined CYPs-catalyzed 1,2-addition of chloral
hydrate 1 and 2-naphthylboron compounds (Table 1). PhS-IPr-
CYP have catalyzed the addition of arylboronic acids to an
excess amount of aqueous formaldehyde to provide the cor-
responding benzylic alcohols in satisfactory yields,*>*¢

although  PhS-IPr-CYP  catalyzed  reaction of  2-
(i)
0 DMF, .t
RJ\H
- OH
CCl s or >
OH DMP r.t. R™ CCl
R then TBD 0°C to r.t.
(ii)
R—M +
HJ\CCI3 then H0"  R7cely
M =Li, MgX
Scheme 1 Previous synthesis of trichloromethylcarbinols.
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Scheme 2 NHC-CYPs-catalyzed 1,2-addition of arylboron

compounds and carbonyl compounds.

naphthaleneboronic acid 2a and 4 equivalent of chloral
hydrate afforded the desired product 5ain 39% yield (entry 1). In
this case, the yield of 5a was improved by the use of an excess of 2a
relative to chloral hydrate (entry 2). Then, using 2-naph-
thaleneboronate 3a instead of 2a increased slightly the yield of 3a
to 70% (entry 3). We have confirmed the efficacy of arylboroxines
in the arylation of trifluoroacetaldehyde hemiacetal from
a preliminary investigation."”” When this reaction was performed
using tri(naphthalene-2-yl)boroxine 4a, the yield of 5a was
improved considerably to 82% (entry 4). Dehydrated chloral was
usable as well as chloral hydrate for this addition reaction (entry 5).
H-IPr-CYP has shown more catalytic activity than PhS-IPr-CYP in
the CYPs-catalyzed arylation of glyoxylate hemiacetals,*? but it was
not suitable for this reaction (entry 6). PhS-IPent-CYP having
sterically bulky alkyl group had more active towards the addition
than PhS-IPr-CYP (entry 7).

Under the optimized conditions, we synthesized various
functionalized trichloromethyl carbinols using PhS-IPent-CYP
catalyzed reaction (Table 2). Substrates bearing sterically
hindered 1-naphthyl group was also converted to the
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corresponding alcohol 5b in moderate yield of 65%. Arylbor-
oxines bearing electron-donating groups like tert-butyl,
phenyl, methoxy and methylthio groups furnished the corre-
sponding products 5c-5h in satisfactory yields of 66-97%.
Interestingly, sterically bulky 2-methoxyphenylboroxine reac-
ted more smoothly than 3-methoxyphenyl and 4-methox-
yphenylboroxines. 4-Fluorophenyl and 4-
bromophenylboroxines provided the corresponding products
5i and 5j in excellent yields, but the reaction using arylbor-
oxines having strong electron-withdrawing groups such as
nitrile, nitro or methoxycarbonyl group have not afforded the
products 5k-5m. Remarkably, the bromo group on the
aromatic ring remained intact, and the Suzuki-Miyaura cross-
coupling product did not observe under this reaction condi-
tion. This catalytic reaction was also applicable to hetero-
arylboroxines containing oxygen or sulfur atom and provided
the products 5n-5r in low to moderate yields, but was not
applicable to an aliphatic boroxine such as 2-phenyl-
ethylboroxine 4s.

Since arylboroxines are more suitable for this reaction than
arylboronic acids, we examined an experiment under the reaction
conditions with H,O (Scheme 3). Because arylboroxines is known
to rapidly absorb H,0O and transform to boronic acids, and adding
water is expected to reduce the dehydration performance of bor-
oxine. Practically, the yield declined as the amount of H,O added
increased, indicating that arylboroxines may be involved in the
dehydration step of chloral hydrate. So, we proposed a plausible
catalytic cycle which is described in Scheme 4. Initially, dehydrated
chloral and arylboronic acids are generated from the hydrolysis of
arylboroxines by chloral hydrate. Then arylpalladium intermediate
6 is formed from a base-promoted transmetallation between an
arylboronic acid and PhS-IPent-CYP, alkoxypalladium 7 is gener-
ated from an insertion of the aryl group on 6 to chloral. Finally,
a transmetallation of complex 7 between an arylboronic acid

Table 1 Optimization of reaction conditions of CYPs-catalyzed 1,2-addition of chloral hydrate 1 and 2-naphtalenelboron compounds

OH

B
C|3c/k0H '

chloral hydrate
1

CYPs (1 mol%)

(2 mol% Pd) OH
KoCO;3 e
toluene

100°C, 2 h

5a

0 0-B,
B=-?momzam,%ﬁ\:><<h» +8 o (4a)
o -B

Entry 1 (mmol) B (mmol) K,CO; (mmol) CYPs Yield® (%)
1 2.0 0.5 0.5 PhS-IPr-CYP 39

2 0.5 1.5 1.5 PhS-IPr-CYP 66

3P 0.5 1.5 1.5 PhS-IPr-CYP 70

4° 0.5 0.5 1.5 PhS-IPr-CYP 82

564 0.5 0.5 1.5 PhS-IPr-CYP 81

6° 0.5 0.5 1.5 H-IPr-CYP 73

7¢ 0.5 0.5 1.5 PhS-TPent-CYP 95 (95)°

“ Yields were determined by "H-NMR using triphenylmethane as an internal standard. ” 3a was used instead of 2a. ¢ 4a was used instead of 2a.
4 Dehydrated chloral was used instead of chloral hydrate. ° Isolated yield.
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Table 2 PhS-IPent-CYP-catalyzed 1,2-addition of arylboroxines 4 to
chloral hydrate 1¢

Ar  PhS-IPent CYP (1 mol%)

0-B (2 mol% Pd)
OH
T , A8 D K,CO3 (3 equiv.) )O\H
Cl,C”~ “OH O-B toluene Cl,C” Ar
Ar o
chloral hydrate 100°C, 2 h
1 4b-s 5b-s
0.5 mmol 1 equiv
O '\
clC O ClsC O ClsC
5¢ O 5d
65% 90% 97%
OH OMe
Clsc)\©\ CI3C)\©’0M8 CI3C)\©
5f 59
O% 66% 88%
OH OH OH
SMe F Br
5i 5j
78% 81% 90%

Q'

C|ac)\©\ ClsC
COOMe

trace

OH
ClyC S,
@)
5n

41%

5l 5m
trace

OH OH

C|3c)\E\§
s o

ClC

o)

50
59%
OH

ClyC” \E i ClyC 0,

5r
60%

&

24%

“ Reaction conditions: 1 (1 equiv., 0.5 mmol), 4 (1.0 equiv., 0.5 mmol),
K,CO; (3.0 equiv., 1.5 mmol), PhS-Ipent-CYP (0.005 mmol, 1 mol%)
and toluene (1 mL) at 100 °C for 2 h in a sealed tube. Isolated yield.

PhS-IPent CYP (1 mol%)

(2 mol% Pd)
OH KoCO3 (3 equiv.) OH
H,0 (x equiv.)
ce” on f o 4a ClsC
1 equiv. toluene
100°C, 2 h Sa
chloral hydrate X=4:85%
1 x=10:68 %
0.5 mmol x =20: 56 %

Scheme 3 The effect of the used amount of H,O on the catalytic
addition reaction.

results in the formation of 1-(hetero)aryl-2,2,2-trichloroethanol and
the regeneration of complex 6.

Conclusions

We have achieved a nucleophilic arylation to chloral hydrate
using PhS-IPent-CYP as a catalyst. The use of arylboroxine is
critical for this reaction, and arylboroxines have acted not only

17736 | RSC Adv, 2021, N, 17734-17739
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Scheme 4 Proposed reaction mechanism.

as an arylcarbanion source but also as a dehydrating agent for
chloral hydrate.

Experimental
General

All reactions were carried out under an argon atmosphere. 'H, *C,
and '°F NMR spectra were recorded on an AVANCE III 400 spec-
trometer (400.15 MHz) at ambient temperature. Melting points were
recorded on Yanako MP-S3. HRMS were recorded on a Thermo Fisher
Scientific Exactive (Orbitrap) using ESI or APCI. Commercially avail-
able organic and inorganic compounds were used without purifica-
tion. PhS-IPr-CYP,** H-IPr-CYP,"** PhS-IPent-CYP'* and arylboroxines
4" were prepared according to the literature procedures.

Preparation and characterizations of compounds

2,2,2-Trichloro-1-(naphthalen-2-yl)ethan-1-0I’> 5a. Chloral
hydrate (83 mg, 0.50 mmol), 2-naphtyl boroxine (231 mg, 0.500
mmol), PhS-IPent-CYP (6.1 mg, 0.0050 mmol) and potassium
carbonate (207 mg, 1.50 mmol) were charged in 10 mL test tube
sealed with a rubber septum. The test tube was evacuated and
backfilled with argon. This sequence was repeated three times.
Then dehydrated toluene (1 mL) was added via the rubber
septum with syringe. In an argon flow, the rubber septum was
replaced with a Teflon liner screw cap. The sealed test tube was
placed into an oil bath preheated 100 °C. After the reaction was
stirred for 2 h and cooled to room temperature, the obtained
crude was purified by passing it though a silica gel column with
a hexane/ethyl acetate to give 131 mg (0.475 mmol, 95%) of
product 5a as a pale yellow solid, mp 93-94 °C (lit.”” 93-94 °C).
'H NMR (400 MHz, CDCl;, ppm): 6 8.09 (s, 1H, ArH), 7.85-7.90
(m, 3H, ArH), 7.88 (dd, J; = 7.3 Hz, J, = 9.8 Hz, 1H, ArH), 7.52 (t,
J = 4.1 Hz, 2H, ArH), 5.40 (d, ] = 3.4 Hz, 1H, CH(OH)CCl,), 3.39
(d, J = 3.4 Hz, 1H, OH); *C NMR (100 MHz, CDCl;, ppm):
6 133.8 (Ar), 132.5 (Ar), 132.3 (Ar), 129.3 (Ar), 128.4 (Ar), 127.7
(Ar), 127.4 (Ar), 126.9 (Ar), 126.4 (Ar), 126.2 (Ar), 103.3 (CCl,),
84.7 (CH(OH)CCl;); HRMS (EI) m/z: [M + CI]” caled for
C;,HoOCl,: 308.9413. Found: 308.9424.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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2,2,2-Trichloro-1-(naphthalen-1-yl)ethan-1-o** 5b. Product
5b was prepared by utilizing the general procedure using 1-
naphtyl boroxine (231 mg, 0.500 mmol) and was isolated as
a pale yellow liquid (91 mg, 0.33 mmol, 66%). 'H NMR (400
MHz, CDCl;, ppm): 6 8.28 (d, J = 8.5 Hz, 1H, ArH), 8.09 (d, ] =
8.5 Hz, 1H, ArH), 7.91-7.97 (m, 2H, ArH), 7.51-7.62 (m, 3H,
ArH), 6.23 (d, J = 4.2 Hz, 1H, CH(OH)CCL), 3.45 (d, J = 4.2 Hz,
1H, OH); "*C NMR (100 MHz, CDCl;, ppm): 6 133.5 (Ar), 132.0
(Ar), 131.4 (Ar), 130.3 (Ar), 129.0 (Ar), 127.2 (Ar), 126.4 (Ar), 125.6
(Ar), 124.9 (Ar), 123.7 (Ar), 103.5 (CCl;), 79.0 (CH(OH)CCl,);
HRMS (EI) m/z: [M + Cl]~ caled for C;,HoOCl,: 308.9413. Found:
308.9422.

1-([1,1'-Biphenyl]-4-yl)-2,2,2-trichloroethan-ol 5c. Product 5¢
was prepared by utilizing the general procedure using 4-
biphenyl boroxine (270 mg, 0.500 mmol) and was isolated as
a pale yellow solid (136 mg, 0.451 mmol, 90%), mp 119-120 °C.
'H NMR (400 MHz, CDCl;, ppm): 6 7.70 (s, 1H, Ar), 7.67 (s, 1H,
Ar), 7.59-7.62 (m, 4H, Ar), 7.45 (t, ] = 7.5 Hz, 2H, Ar), 7.36 (t, ] =
7.5 Hz, 1H, Ar), 5.26 (s, 1H, CH(OH)CCI;), 3.32 (s, 1H, OH); *C
NMR (100 MHz, CDCl,, ppm): 6 142.4 (Ar), 140.4 (Ar), 133.8 (Ar),
129.7 (Ar), 128.9 (Ar), 127.7 (Ar), 127.2 (Ar), 126.6 (Ar), 103.2
(CCly), 84.4 (CH(OH)CCl;); HRMS (EI) m/z: [M + Cl]|™ caled for
C14H,;,0Cl,: 334.9569. Found: 334.9583.

1-(4-(tert-Buthyl)phenyl)-2,2,2-trichloroethan-1-ol’* 5d.
Product 5d was prepared by utilizing the general procedure
using 4-tert-buthylpheny boroxine (240 mg, 0.500 mmol) and
was isolated as a pale yellow solid (95 mg, 0.34 mmol, 67%), mp
77-78 °C. "H NMR (400 MHz, CDCl;, ppm): 6 7.52 (d, ] = 8.4 Hz,
2H, ArH), 7.39 (d, J = 8.4 Hz, 2H, ArH), 5.16 (d, J = 4.1 Hz, 1H,
CH(OH)CCl,), 3.33 (d, J = 4.1 Hz, 1H, OH) 1.32 (s, 9H, C(CH;),);
BC NMR (100 MHz, CDCl;, ppm): 6 152.6 (Ar), 132.0 (Ar), 128.9
(Ar), 124.8 (Ar), 103.3 (CCl3), 84.4 (CH(OH)CCly), 34.7 (C(CH3)3),
31.3 (C(CHz);); HRMS (EI) m/z: [M + Cl]™ caled for C;,H;50Cly:
314.9882. Found: 314.9894.

2,2,2-Trichloro-1-(4-methoxyphenyl)ethan-1-ol’> 5e. Product
5e was prepared by utilizing the general procedure using 4-
methoxyphenyl boroxine (201 mg, 0.500 mmol) and was iso-
lated as a pale yellow liquid (90 mg, 0.35 mmol, 70%). "H NMR
(400 MHz, CDCl,, ppm): 6 7.52 (d, ] = 8.7 Hz, 2H, ArH), 6.90 (d, ]
= 8.7 Hz, 2H, ArH), 5.15 (d,J = 2.3 Hz, 1H, CH(OH)CCl;), 3.81 (s,
3H, OCHj,), 3.35 (d, J = 2.3 Hz, 1H, OH); "*C NMR (100 MHz,
CDCls, ppm): 6 160.4 (Ar), 130.4 (Ar), 127.0 (Ar), 113.2 (Ar), 103.5
(CCly), 84.2 (CH(OH)CCL,), 55.3 (OCH,); HRMS (EI) m/z: [M +
Cl]™ caled for CogHo0,Cly: 288.9362. Found: 288.9374.

2,2,2-Trichloro-1-(3-methoxyphenyl)ethan-1-ol 5f. Product 5f
was prepared by utilizing the general procedure using 3-
methoxyphenyl boroxine (201 mg, 0.500 mmol) and was iso-
lated as a colourless liquid (85 mg, 0.33 mmol, 66%). "H NMR
(400 MHz, CDCl, ppm): 6 7.28 (dd, J; = 8.0 Hz, J, = 8.0 Hz, 1H,
ArH), 7.16-7.17 (m, 2H, ArH), 6.94 (d, J = 8.0 Hz, 1H, ArH), 5.16
(d,J = 4 Hz, 1H, CH(OH)CCl;), 3.80 (s, 3H, OCH;), 3.43 (d, ] =
12 Hz, 1H, OH); *C NMR (100 MHz, CDCl;, ppm): 6 159.0 (Ar),
136.4 (Ar), 128.8 (Ar), 121.8 (Ar), 115.0 (Ar), 114.9 (Ar), 103.0
(ccCly), 84.4 (CH(OH)CCLs), 55.3 (OCHj3); HRMS (EI) m/z: [M +
Cl]™ caled for CoHo0,Cl,: 288.9362. Found: 288.9372.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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2,2,2-Trichloro-1-(2-methoxyphenyl)ethan-1-ol 5g. Product
5g was prepared by utilizing the general procedure using 2-
methoxyphenyl boroxine (201 mg, 0.500 mmol) and was iso-
lated as a colourless liquid (113 mg, 0.44 mmol, 88%). "H NMR
(400 MHz, CDCl3, ppm): 6 7.60 (dd, J; = 1.7 Hz, J, = 7.7 Hz, 1H,
ArH), 7.35 (m, 1H, ArH), 6.91-7.01 (m, 1H, ArH), 5.59 (d, J =
6.9 Hz, 1H, CH(OH)CCl,), 4.25 (d, J = 6.9 Hz, 1H, OH), 3.84 (s,
3H, OCH,); *C NMR (100 MHz, CDCl;, ppm): 6 157.7 (Ar), 130.6
(Ar), 130.4 (Ar), 123.5 (Ar), 120.5 (Ar), 111.2 (Ar), 103.5 (CCl),
80.3 (CH(OH)CCl5), 55.6 (OCH,); HRMS (EI) m/z: [M + Cl]~ caled
for CoHo0,Cly: 288.9362. Found: 288.9371.

2,2,2-Trichloro-1-(4-(methylthio)phenyl)ethan-1-ol 5h.
Product 5h was prepared by utilizing the general procedure
using 4-(methylthio)phenyl boroxine (225 mg, 0.500 mmol) and
was isolated as a pale yellow solid (107 mg, 0.394 mmol, 78%),
mp 89.5-90.0 °C. "H NMR (400 MHz, CDCl;, ppm): 6 7.50 (d, J =
8.4 Hz, 2H, ArH), 7.23 (d, ] = 8.4 Hz, 2H, ArH), 5.14 (d, ] = 3.0 Hz,
1H, CH(OH)CCl;), 3.46 (d, J = 3.0 Hz, 1H, OH), 2.48 (s, 3H,
SCH3); >C NMR (100 MHz, CDCl;, ppm): 6 140.4 (Ar), 131.4 (Ar),
129.6 (Ar), 125.3 (Ar), 103.1 (CCl,), 84.2 (CH(OH)CCL;), 15.2
(SCH,3); HRMS (EI) m/z: [M + Cl]| ™ caled for CoHoOCl,S: 304.9134.
Found: 304.9146.

2,2,2-Trichloro-1-(4-fluorophenyl)ethan-1-ol'* 5i. Product 5i
was prepared by utilizing the general procedure using 4-fluo-
rophenyl boroxine (183 mg, 0.500 mmol) and was isolated as
a pale yellow liquid (99 mg, 0.41 mmol, 81%). 'H NMR (400
MHz, CDCl,, ppm): 6 7.58-7.61 (m, 2H, ArH), 7.07 (t, ] = 8.7 Hz,
2H, ArH), 5.20 (d, J = 3.1 Hz, 1H, CH(OH)CCl;), 3.40 (d, J =
3.1 Hz, 1H, OH); "*C NMR (100 MHz, CDCl;, ppm): 6 163.4 (d,
YJo_r = 247 Hz, Ar), 131.1 (d, *Jc_r = 8.6 Hz, Ar), 130.6 (d, *Jc_r =
3.0 Hz, Ar), 114.9 (d, Jo_p = 21.4 Hz, Ar), 103.1 (d, *Jc_r = 2.4 Hz,
CCl;), 83.8 (CH(OH)CCLy); 'F (377 MHz, CDCl;, ppm):
6 —117.8(s, 1F, ArF); HRMS (EI) m/z: [M + Cl|” caled for
CgHgOCI,F: 276.9162. Found: 276.9170.

1-(4-Bromophenyl)-2,2,2-trichloroethan-1-o1’* 5j. Product 5j
was prepared by utilizing the general procedure using 4-bro-
mophenyl boroxine (274 mg, 0.500 mmol) and was isolated as
a pale yellow liquid (138 mg, 0.45 mmol, 90%). "H NMR (400
MHz, CDCl;, ppm): 6 7.49-7.56 (m, 4H, ArH), 5.18 (s, 1H,
CH(OH)CCI,), 3.59 (s, 1H, OH); *C NMR (100 MHz, CDCl,,
ppm): 6 133.8 (Ar), 131.1 (Ar), 130.9 (Ar), 123.9 (Ar), 102.7 (CCl,),
83.9 (CH(OH)CCl;); HRMS (EI) m/z: [M + CI|~ caled for CgHe-
OBrCl,: 336.8362. Found: 336.8374.

2,2,2-Trichloro-1-(thiophen-2-yl)ethan-1-ol”> 5n. Product 5n
was prepared by utilizing the general procedure using 2-thio-
phene boroxine (165 mg, 0.500 mmol) and was isolated as a pale
yellow liquid (47 mg, 0.20 mmol, 41%). '"H NMR (400 MHz,
CDCl;, ppm): 6 7.40 (dd, J; = 1.2 Hz, ], = 5.1 Hz, 1H, ArH), 7.31
(m, 1H, ArH), 7.04 (dd, J; = 3.6 Hz, ], = 5.1 Hz, 1H, ArH), 5.48 (d,
J = 4.4 Hz, 1H, CH(OH)CCl;), 3.40 (d, J = 4.4 Hz, 1H, OH); *C
NMR (100 MHz, CDCl,, ppm): 6 137.3 (Ar), 129.2 (Ar), 127.1 (Ar),
126.3 (Ar), 102.5 (CCl;), 81.6 (CH(OH)CCl,); HRMS (EI) m/z: [M +
Cl]™ caled for CgH50Cl,S: 264.8821. Found: 264.8833.

2,2,2-Trichloro-1-(thiophen-3-yl)ethan-1-ol'* 50. Product 50
was prepared by utilizing the general procedure using 3-thiophene
boroxine (165 mg, 0.500 mmol) and was isolated as a pale yellow

RSC Adv, 2021, M, 1773417739 | 17737
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liquid (68 mg, 0.29 mmol, 59%). "H NMR (400 MHz, CDCl,, ppm):
67.55(t,] = 2.4 Hz, 1H, ArH), 7.32 (m, 2H, ArH), 5.32 (d,] = 4.4 Hz,
1H, CH(OH)CCl,), 3.29 (d, J = 4.4 Hz, 1H, CCl;); *C NMR (100
MHz, CDCl;, ppm): 6 136.0 (Ar), 127.6 (Ar), 126.2 (Ar), 125.2 (Ar),
102.8 (CCls), 81.3 (CH(OH)CCl;); HRMS (EI) m/z: [M + Cl] ™ caled for
CeH50ClL,S: 264.8821. Found: 264.8831.

2,2,2-Trichloro-1-(furan-3-yl)ethan-1-ol 5p. Product 5p was
prepared by utilizing the general procedure using 3-furan bor-
oxine (141 mg, 0.500 mmol) and was isolated as a pale yellow
liquid (50 mg, 0.23 mmol, 46%). "H NMR (400 MHz, CDCI,,
ppm): 6 7.66 (t,] = 0.7 Hz, 1H, ArH), 7.45 (t, ] = 1.7 Hz, 1H, ArH),
6.66 (dd, J; = 0.7 Hz, J, = 1.7 Hz, 1H, ArH), 5.21 (d, J = 4.7 Hz,
1H, CH(OH)CCI;), 3.28 (d, J = 4.7 Hz, 1H, OH); >*C NMR (100
MHz, CDCl;, ppm): 6 142.8 (Ar), 142.6 (Ar), 120.8 (Ar), 110.0 (Ar),
102.8 (CCl3), 79.0 (CH(OH)CCl;); HRMS (EI) m/z: [M + CI]~ caled
for C¢H50,Cly: 248.9049. Found: 248.9056.

1-(Benzo[b]thiophene-2-yl)-2,2,2-trichloroethan-1-0I**  5q.
Product 5q was prepared by utilizing the general procedure
using 2-benzo[b]thiophene boroxine (240 mg, 0.500 mmol) and
was isolated as a pale yellow solid (34 mg, 0.12 mmol, 24%), mp
109-110 °C(lit.** 109-110 °C). 'H NMR (400 MHz, CDCl;, ppm):
6 7.82-7.89 (m, 2H, ArH), 7.59 (s, 1H, ArH), 7.39-7.41 (m, 2H,
ArH), 5.57 (d, J = 4.4 Hz, 1H, CH(OH)CCl;), 3.48 (d, ] = 4.4 Hz,
1H, OH); "*C NMR (100 MHz, CDCl;, ppm): 6 140.1 (Ar), 138.4
(Ar), 138.0 (Ar), 126.2 (Ar), 125.2 (Ar), 124.5 (Ar), 124.1 (Ar), 122.3
(Ar), 102.1 (CCl;), 82.0 (CH(OH)CCl;); HRMS (EI) m/z: [M + CI]~
caled for C;,H,0OCl,S: 314.8977. Found: 314.8992.

1-(Benzofuran-2-yl)-2,2,2-trichloroethan-1-ol 5r. Product 5r
was prepared by utilizing the general procedure using 2-
benzofuran boroxine (207 mg, 0.500 mmol) and was isolated as
a pale yellow solid (80 mg, 0.30 mmol, 60%), mp 71-72 °C. 'H
NMR (400 MHz, CDCl;, ppm): 6 7.60 (m, 1H, ArH), 7.51 (m, 1H,
ArH), 7.24-7.36 (m, 2H, ArH), 6.98 (s, 1H, ArH), 5.35 (d, J =
7.2 Hz, 1H, CH(OH)CCly), 3.59 (d, ] = 7.2 Hz, 1H, OH); "*C NMR
(100 MHz, CDCl;, ppm): 6 154.7 (Ar), 150.7 (Ar), 127.4 (Ar), 125.3
(Ar), 123.3 (Ar), 121.6 (Ar), 111.6 (Ar), 107.9 (Ar), 100.9 (CCl;),
79.7 (CH(OH)CCl;); HRMS (EI) m/z: [M + CI|” caled. for
C10H,0,Cl,: 298.9206. Found: 298.9216.
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