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Alkoxycarbonyl radicals from alkyloxalyl chlorides:
photoinduced synthesis of isoquinolinediones
under visible light irradiation†
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Alkyloxalyl chlorides, generated from alcohols and oxalyl chlorides, are used as alkoxycarbonyl radicals in

the reaction of N-acryloyl benzamides under photocatalysis at room temperature. In this report, we

demonstrate that this approach can be compatible with a variety of alcohol-containing pharmaceutically

active compounds under visible light irradiation. A variety of isoquinoline-1,3(2H,4H)-diones are prepared

in moderate to good yields.

Carbonylation reactions are of crucial importance in the field
of modern organic synthesis since they provide access to car-
bonyl-containing derivatives, such as ketones, amides and car-
boxylic esters, which play an important role in fields ranging
from organic chemistry to medical and pharmaceutical
sciences.1 In these fields, acyl/carbamoyl/alkoxycarbonyl rad-
icals are useful reactive intermediates which can be combined
with carbon fragments to obtain unique carbonyl-containing
derivatives.2 So far, many methods for the generation and
application of acyl/carbamoyl radicals have been reported.3–12

For example, acyl radicals can be obtained either by single-
electron reduction of acyl chlorides,4 anhydrides,5 and hyper-
valent iodine reagents,6 or upon oxidation of α-ketoacids7 and
acyl silanes.8 Carbamoyl radicals can also be generated from
the corresponding 4-carbamoyl dihydropyridines,9

N-hydroxyphthalimido oxamides,10 oxalate monoamides11 and
carbamoyl chlorides12 in the presence of a photocatalyst under
visible light irradiation.

However, compared with acyl/carbamoyl radicals, alkoxycar-
bonyl radicals have remained largely unexplored.13 Although
alkoxycarbonyl radicals can attack unsaturated C–C bonds
leading to carboxylic esters, the concurrent decarboxylation
step to form stable tertiary carbon radicals often plays a domi-

nant role in synthesis. Thus, much effort has been devoted to
alkoxycarbonyl radical decarboxylation through photocatalysis
in recent years.14

Traditionally, alkoxycarbonyl radicals can be generated
most commonly from the corresponding xanthates and sele-
nides.15 Additionally, these radicals can also be formed from
carbazates by treatment with metal catalysts and stoichio-
metric quantities of oxidants.16 Recently, it was reported that
alkoxycarbonyl radicals could be produced by photoredox-cata-
lyzed fragmentation of alkyl oxalates and methyl
N-phthalimidoyl oxalates (Schemes 1a and b).13,14 The existing
approaches for providing alkoxycarbonyl radical precursors
often require multistep synthetic processes. Thus, the develop-
ment of a robust strategy for the rapid generation of alkoxycar-
bonyl radicals under mild conditions, especially using readily
available and inexpensive substrates, is highly desirable.

Scheme 1 Generation of alkoxycarbonyl radicals under photoredox
catalysis.
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Xu and co-workers disclosed that single-electron reduction
of aroyl chlorides with a photocatalyst would provide aroyl rad-
icals.4 Inspired by this result, we expected that it might be
possible to find a novel strategy for the generation of alkoxycar-
bonyl radicals from the corresponding acyl chloride under
photocatalysis. Recently, we have reported that alkyloxalyl
chlorides, generated in situ from the corresponding oxalyl
chloride and alcohols, can be used as alkoxycarbonyl radical
fragments under photoredox catalysis (Scheme 1c).17 To
further demonstrate the advantage of this conversion, a variety
of isoquinoline-1,3(2H,4H)-diones are prepared in moderate to
good yields (Scheme 1d). An important feature of this alkoxy-
carbonylation/cyclization reaction is the capacity of alkyloxalyl
chlorides to produce alkoxycarbonyl radicals through single-
electron reduction/CO extrusion.

To verify the practicability of the above hypothesis, commer-
cially available ethyl chlorooxoacetate (2a)18 as the alkoxycarbo-
nyl radical precursor and N-methacryloyl-N-methylbenzamide
(1a) as the radical trapper were selected as substrates for reac-
tion development (Table 1). The reactions were performed at
room temperature under visible light irradiation with a blue
LED strip in the presence of Ir(ppy)3 as the photocatalyst.
Since HCl would be released during the reaction process, 2,6-
lutidine was added as the base. Gratifyingly, the desired alkox-
ycarbonylation/cyclization product (3a) was obtained in good
yield (70%) (Table 1, entry 1). This result demonstrated that
our design was feasible and promising. The yield of compound
3a was decreased to 37% when Ir(ppy)2(dtbbpy)PF6 was used
as the photocatalyst (Table 1, entry 2). The donor−acceptor-
type photocatalyst 3DPA2FBN, which is a strongly reducing
organic photocatalyst,19 provided a lower yield (Table 1, entry

3). Next, the solvent effect was evaluated (Table 1, entries 4–7)
and it was found that acetonitrile was the optimal reaction
medium, giving rise to the corresponding product 3a in 76%
yield (Table 1, entry 6). Subsequently, other bases were
screened, and the result showed that inorganic bases were less
efficient, while 2,6-di-tert-butylpyridine was comparably
effective. Additionally, blank experiments demonstrated that
both a photocatalyst and visible light were necessary for this
alkoxycarbonylation/cyclization reaction (Table 1, entries 12
and 13). Meanwhile, the reaction could not occur when ethyl
chloroformate (2a′) was used as the alkoxycarbonyl radical
source (Table 1, entry 14). This result might be rationalized by
the more negative reduction potential of alkyl chloroformates
than the excited-state photocatalyst. With the optimized con-
ditions in hand, we then investigated the scope of N-acryloyl
benzamides in this reaction. As shown in Table 2, it was found
that a wide range of N-methacryloyl benzamide derivatives
bearing electron-donating (methyl, methoxy, tert-butyl and
dimethyl) and electron-withdrawing (F, Cl and Br) substituents
in the aromatic ring were suitable substrates for this trans-
formation. Notably, reactions of para-tbutyl- and 3,5-dimethyl-
substituted substrates afforded the acyl migration products 3e′
and 3f′, respectively. Substrates bearing different alkyl groups
at the N-position of amides could readily convert into the iso-
quinoline-1,3(2H,4H)-diones (3i–3t). The excellent functional
group tolerance of –Bn (3o), –CN (3p), and –CO2Et (3q), and a
terminal unsaturated bond (3r) supported the practicality of
this reaction. Additionally, chiral N-methacryloyl benzamides
served as radical trappers in this alkoxycarbonylation/cycliza-
tion reaction, leading to the chiral isoquinoline-1,3(2H,4H)-
diones (3s and 3t) in moderate yields. Acrylamides with a
benzyl and phenyl group at the α-position converted into the
target products 3u and 3v as well. To demonstrate the practic-
ability of this alkoxycarbonylation/cyclization reaction, a gram-
scale experiment was carried out, which provided the corres-
ponding product 3a in 62% yield.

Subsequently, various alkyloxalyl chlorides were examined,
giving rise to the results shown in Table 3. It was found that
alkyloxalyl chlorides generated directly from the corresponding
alcohols could smoothly provide the alkoxycarbonyl radicals.
The yield of the alkoxycarbonylation/cyclization product
decreased to 85% (4a vs. 3p) when methyl oxalyl chloride was
used as the radical precursor in the reaction with N-(2-cya-
noethyl)-N-methacryloyl benzamide 1p. Further underscoring
the compatibility of this transformation, some alkyloxalyl
chlorides were obtained by treatment of alcohols with a slight
excess of oxalyl chloride in DCM, which were employed in this
radical cascade reaction after the removal of the solvent and
the excess oxalyl chloride.20 The alkyloxalyl chloride derived
from long-chain aliphatic alcohols was found to be successful
in this transformation (4b). To further demonstrate the syn-
thetic robustness of this conversion, we applied this approach
for the construction of a series of diversely functionalized iso-
quinoline-1,3(2H,4H)-diones. Chlorooxoacetates derived from
natural products including menthol (product 4c, 80% yield),
(−)-borneol (product 4d, 58% yield), β-cholestanol (product 4e,

Table 1 Optimization of reaction parametersa,b

Entry PC Solvent Base Time 3a (%)

1 Ir(ppy)3 DMF 2,6-Lutidine 12 h 70
2 Ir(ppy)2(dtbbpy)PF6 DMF 2,6-Lutidine 12 h 37
3 3DPA2FBN DMF 2,6-Lutidine 12 h 47
4 Ir(ppy)3 MeCN 2,6-Lutidine 18 h 76
5 Ir(ppy)3 THF 2,6-Lutidine 36 h 14
6 Ir(ppy)3 DCM 2,6-Lutidine 48 h 30
7 Ir(ppy)3 EA 2,6-Lutidine 48 h 17
8 Ir(ppy)3 MeCN 2,6-ditBu-Py 18 h 70
9 Ir(ppy)3 MeCN K2HPO4 18 h 51
10 Ir(ppy)3 MeCN Na2HPO4 18 h 19
11 Ir(ppy)3 MeCN KHCO3 18 h 16
12 — MeCN 2,6-Lutidine 18 h 0
13c Ir(ppy)3 MeCN 2,6-Lutidine 18 h 0
14d Ir(ppy)3 MeCN 2,6-Lutidine 18 h 0

aUnless otherwise noted, reaction conditions are as follows: 1a
(0.2 mmol), 2a (0.6 mmol), photocatalyst (0.004 mmol), base
(0.4 mmol), solvent (4 mL), and 36 W blue LEDs under a N2 atmo-
sphere. b Yield determined by 1H NMR analysis using 1,3,5-trimethoxy-
benzene as an internal standard. c In the dark. dCompound 2a′ was
used instead of ethyl chlorooxoacetate 2a.
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83% yield) and androsterone (product 4f, 81% yield) were
workable as well. Chiral amino alcohol derivatives were satis-
factory starting materials and could uniformly produce the
synthetically valuable isoquinoline-1,3(2H,4H)-diones with
good yields (4g and 4h).

As mentioned above, the control experiments demonstrated
that both visible light and photocatalyst were crucial for this
alkoxycarbonylation/cyclization reaction. On the basis of these
results and previous reports,17,21 we proposed a plausible
mechanism as depicted in Scheme 2. Ethyl chlorooxoacetate
(2a) could react with 2,6-lutidine to afford the corresponding
acyl pyridinium salt (5).22 On the other hand, this photo-
catalytic cycle was initiated by the excitation of the photo-
catalyst Ir(ppy)3 (12) to the excited-state photocatalyst Ir(ppy)3*
(13),22 which subsequently transferred a single electron to acyl
pyridinium salt (5) to generate radical 6. Homolysis of the C–N
bond would liberate 2,6-lutidine and produce acyl radical 7.22

The highly activated acyl radical 7 could rapidly go through CO
extrusion and provide a stabilized alkoxycarbonyl radical 8.
Radical 8 would then react with N-methacryloyl-N-methyl-
benzamide (1a), giving rise to a tertiary carbon radical inter-
mediate 9. Subsequently, a radical-arene cyclization would
occur leading to radical intermediate 10, which was readily oxi-
dized by Ir(ppy)3

+ to generate a cation intermediate 11 (path
A). Alternatively, the species 10 could also be oxidized by acyl
pyridinium salt (5) to providecation 11, along with the gener-
ated radical 6. After deprotonation, the desired product 3a
would be produced.

Scheme 2 Proposed mechanism.

Table 3 Photoinduced synthesis of isoquinolinediones under visible
light irradiation from N-acryloyl benzamide 1p and alkyloxalyl chloridesa

aUnless otherwise noted, reaction conditions are as follows: 1p
(0.2 mmol), 2 (0.6 mmol), Ir(ppy)3 (0.004 mmol), 2,6-lutidine
(0.4 mmol), MeCN (4 mL), and 36 W blue LEDs under a N2 atmo-
sphere. bDMF was used instead of MeCN.

Table 2 Photoinduced synthesis of isoquinolinediones under visible
light irradiation from N-acryloyl benzamides and ethyl
chlorooxoacetatesa

aUnless otherwise noted, reaction conditions are as follows: 1
(0.2 mmol), 2a (0.6 mmol), Ir(ppy)3 (0.004 mmol), 2,6-lutidine
(0.4 mmol), MeCN (4 mL), and 36 W blue LEDs under a N2
atmosphere.
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In conclusion, we have developed an alkoxycarbonylation/
cyclization reaction of N-acryloyl benzamides and alkyloxalyl
chlorides under photocatalysis at room temperature. The
application of alkoxycarbonyl radicals in the intermolecular
conjugate addition to electron-deficient alkenes has also been
demonstrated. The key finding is the use of alkyloxalyl chlor-
ides as alkoxycarbonyl radical precursors, which are generated
from the corresponding alcohols and oxalyl chloride. With this
approach, a variety of isoquinoline-1,3(2H,4H)-diones are pre-
pared in moderate to good yields. Additionally, this strategy is
compatible with a variety of alcohol-containing pharmaceuti-
cally active compounds.
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