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Multiple linear regression analysis, as a part of machine learning, is employed to develop
equations for the quick and accurate prediction of the methane uptake and working
capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of
MOFs (geometric descriptors) are employed for developing the equations: surface area,
pore volume and density of the crystal structure. The values of the geometric
descriptors can be obtained much more cheaply in terms of time and other resources
compared to running calculations of gas sorption or performing experimental work.
Within this work sets of equations are provided for the different cases studied: a series
of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane
storage and working capacities, and the whole CoRE MOF database (11 000 structures).

Introduction

Methane, as a major component of natural gas, is considered to be an alternative
fuel to oil. Natural gas is much cleaner than gasoline or diesel.' Methane is a gas
at room temperature and pressure and has a very low energy density. To overcome
this problem, there are two forms of stored natural gas in automobiles - liquified
for trucks and compressed for personal cars. MOFs have been studied for years as
promising adsorbents for automobile applications. MOFs are promising mate-
rials for different applications: gas storage®*® and separation,”® catalysis,
sensing," electrochemical energy storage,*'® memory devices,"”” biomedical
imaging,'®* biomolecule encapsulation and drug delivery.*** The US Depart-
ment of Energy (DoE) has established targets of 50 wt% and 263 cm(STp]3 cm? for
methane storage methods suitable for such employment. On the one hand, recent
results show that it is almost impossible to simultaneously get both the gravi-
metric and volumetric methane working capacities at room temperature.** On the
other hand, there have been some recent improvements showing the great
potential of MOFs for effective methane storage.?
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Computational approaches have played a great role in studying MOFs and other
porous materials for gas storage: grand canonical Monte Carlo methods (GCMC)
for revealing adsorption isotherms, classical molecular dynamics (MD) for
studying gas diffusion in MOFs, density functional theory for obtaining favourable
binding sites and crystal structure change, etc. Material simulations have been
predicting novel advanced not yet synthesized MOFs since 2004,>° when the design
of new IRMOF materials was proposed for methane storage using computer
simulations. The large-scale screening of hypothetical MOFs has been performed
computationally by creating porous structures from chemical databases of
building blocks, which are based on known MOFs.”” More than 300 MOFs have
been identified with outstanding methane storage capacities and structure-prop-
erty relationships were also revealed. A total of 122 835 MOFs have been designed
computationally to reveal both the total methane uptake and working capacity as
a function of the void fraction, volumetric surface area and heat of adsorption,
identifying a maximal working capacity at room temperature.>®

A lot of effort has been put into creating a database of structures for
computational screening, which are free from solvents, disorders, etc. The
Computation-Ready, Experimental Metal-Organic Framework Database (CoRE
MOF Database) contains over 14 000 porous, three-dimensional MOFs.” It is
very convenient for potential users that pore analytics and physical property
data are included as well.*® Another database is a subset of the Cambridge
Structural Database (CSD), where 69 666 MOF materials were identified by the
Cambridge Crystallographic Data Centre (CCDC).* A total of 13 512 MOFs with
41 different edge-transitive topologies were generated using the ToBaCCo code,
which employed a reverse topological approach.** The structure files of MOFs
obtained experimentally and published can contain some disorders, solvent
molecules, etc. which are not suitable for computational work.

Recently, machine learning (ML) has become an important tool in designing
new materials, leading materials chemistry towards more rational design.** The
World Economic Forum identified the union of big data and artificial intelligence
as the Fourth Industrial Revolution, which can dramatically improve the research
process.* The high-throughput screening (HTC) of databases employing MD or
GCMC is computationally very intensive and demanding. On the one hand, the
employment of ML methods can significantly decrease the complexity of compu-
tational screening, and at the same time provides results with high accuracy, and
on the other hand, the existing results of the HTC of databases are an outstanding
opportunity for employing ML methods to reveal desired properties. ML has been
employed to perform an analysis of the chemical diversity of MOFs.** ML methods
are significantly developed nowadays, but in the case of MOFs there is still a lot of
work that needs to be done. ML is very promising approach in discovering new
MOFs, revealing structure-property relationships. Predictive algorithms are
employed to help and sometimes replace simulations. There are some nice
examples of employing ML for discovering the properties of porous materials: an
artificial neural network has been used to identify the performance limits of
methane storage in zeolites, and revealed good agreement in the methane working
capacity of the top structures between the zeolites and the structures generated by
the neural network.* A MOF generation approach based on ML was discovered in
ref. 36 by devising and constructing the supramolecular variational autoencoder
(SmVAE). SmVAE is employed for the “inverse design”, where MOFs with the best
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performance are identified and generated. A generative adversarial artificial neural
network has been created to produce 121 crystalline porous materials, employing
inputs in the form of energy and material dimensions.*” Finally, there has been
a nice overview of ML algorithms for the chemical sciences.®

Experimental and/or computational work needs to be done to reveal the
desired property of a structure. In case of identifying the sorption properties of
experimentally obtained MOFs, computer simulations need to be done or specific
equipment should be employed. This is acceptable for studying several crystals,
but in the case of revealing the properties of a big family of structures conven-
tional approaches are too costly in terms of time, money, workforce, etc. ML can
help a lot for revealing the properties of MOFs, saving both experimental and
computational efforts. In spite of the wide employment of ML techniques, they
have been used very rarely for developing equations describing the sorption
properties (including the working capacity) of MOFs.

Linear regression is a supervised ML algorithm. Simple linear regression
employs the slope-intercept form, where x is the input data (independent vari-
able), f{x) is the prediction (dependent variable), k is the slope coefficient for the x
variable and b is the y intercept, which are adjusted via learning to give the
accurate prediction: f{x) = kx + b. Multiple linear regression is the most popular
form of linear regression. Multiple linear regression is employed to show the
relationship between one dependent variable and two or more independent
variables: f(x, y, z) = ix + jy + kz + b, where x, y and z are the independent variables,
flx,y, z) are the dependent variables and i, j, k and b are the adjustable parameters.

The main goal of this work is to show that multiple linear regression analysis is an
outstanding tool for revealing the structure-property relationships of MOFs. More
importantly, by employing multiple linear regression analysis analytical equations
can be developed, showing that the methane total and working capacity values at
different thermodynamic conditions can be calculated from three variables based on
the crystal characteristics of MOFs (geometric descriptors): surface area, pore volume
and density. The values of the descriptors can be obtained routinely and very quickly
in comparison to GCMC simulations or experimental work by well known and highly
efficient simulation packages such as Poreblazer,**** Zeo++,"" etc.

Therefore, if an experimentalist or theoretician has a file with a crystal struc-
ture, or a bunch of files, she/he can easily obtain the methane total and working
capacities by simply employing the equations. The performance of the model
designed can be measured by several characteristics: the mean absolute error
(MAE), mean square error (MSE), root-mean-square error (RMSE) and the coeffi-
cient of determination,R”, as described below, where x; is obtained from experi-
ments or GCMC simulations, y; is the value predicted by multiple linear
regression and y is the average of the predicted values.

1 n
MAE(x, y) = n Z‘X:‘ — i
i=1
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RMSE = - Xi — Vi
(x,) ,/n;(‘c »)
Z (xi =)’
R(x7y)2 =1- l:nl
(yt - y)2

It should be noted that a higher value of R* and lower values of MAE, MSE and
RMSE show the better accuracy of the ML model used. R” is in the range beween
0 and 1, where 1 shows that the prediction is performed without any error from
the set of geometrical descriptors and 0 means that the prediction cannot be
performed by any of the geometrical descriptors.

Results and discussion

Application of multiple linear regression analysis for developing equations from
a set of MOFs with one topology (NbO)

The application of multiple linear regression analysis has shown very exciting
results for developing equations of the methane total uptake and working
capacity of a family of MOFs with the same topology. Multiple regression analysis
has been applied to reveal structure-property relationships, employing data ob-
tained for MOFs with NbO topology studied by different groups, pioneered by
Chen et al.,*”* and then Schroder et al.**** and Bai et al.*

The following parameters (descriptors) of the crystal structures of MOFs of
different sizes are used to develop the equations for predicting the gravimetric
total uptake and working capacity of methane sorption obtained at a pressure
range of 65-5 bar at a temperature of 298 K: surface area (Sa), density of a crystal
(Dc) and pore volume (PV). The data of the crystal structure parameters, as well as
the values of the total uptake (at a pressure of 65 bar) and working capacity (at
a pressure range of 65-5 bar) at a temperature of 298 K are summarized in Table 1.

The equations developed are shown below:

Total_uptake = 181.726 + 0.02 x Sa + 138.777 x Pv — 38.763 x Dc
R* = 0.931; MAE = 7.59 cm® ¢~ !; MSE = 111.47; RMSE = 10.56 cm® g%
Working_capacity = 266.409 + 0.038 x Sa + 23.013 x Pv — 176.169 x Dc

R®> = 0.913; MAE = 9.33 cm® ¢~ '; MSE = 151.56; RMSE = 12.31 cm® g~ .

The results obtained with multiple linear regression analysis show that for the
family of MOFs with the same topology (NbO) R* = 0.931 for the total uptake and
R* = 0.913 for the working capacity. Delightfully, the MAE is very small: 7.59 cm®
g "and 9.33 cm® g for the total uptake and working capacity, respectively. The
RMSE shows moderate values: 10.56 cm® g~ and 12.31 cm® g™* for the total
uptake and working capacity, respectively.
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Table 1 Geometrical descriptors (Sa, Pv and Dc), total uptake (at 65 bar) and working
capacity (at 65-5 bar) at 298 K

Total uptake, Working capacity,

MOFs Sa,m’>g~' Pv,em®’g™' Dc,gem™® cm® gt em?® gt Ref.
ZJU-5a 2829 1.08 0.679 367 277 46
UTSA-75a 2836 1.06 0.698 360 275 46
UTSA-76a 2820 1.09 0.699 368 282 46
UTSA-77a 2807 1.08 0.690 361 272 46
UTSA-78a 2840 1.09 0.694 363 275 46
UTSA-79a 2877 1.08 0.697 366 277 46
NOTT-101a 2805 1.08 0.688 344 263 46
UTSA-111a 3252 1.229 0.590 397 309 25
UTSA-20a 1620 0.66 0.909 278 206 47
UTSA-88a 1771 0.685 0.860 288 215 48
UTSA-80a 2280 1.03 0.694 336 251 49
PCN-14 2000 0.85 0.829 334 228 47
NOTT-100a 1661 0.677 0.927 248 150 50
NOTT-102a 3342 1.268 0.587 404 327 50
NOTT-103a 2958 1.157 0.643 367 285 50
NOTT-109a 2110 0.850 0.790 306 215 50
NJU-Bai 41 2370 0.92 0.741 331 232 4
NJU-Bai 42 2830 1.07 0.693 356 278 4
NJU-Bai 43 3090 1.22 0.639 397 310 4

The main conclusion from this part is that from using only the crystal struc-
ture parameters of a series of MOFs with NbO topology anyone can calculate the
methane working capacity and total uptake, using the equations developed, very
easily and extremely fast with a high precision. This is extremely useful for
discovering new structures and screening MOFs with the same topology. For
example, a user can draw and optimize a MOF in Material Studio (or employing
other programs), reveal the values of the geometrical descriptors using the
simulation packages Poreblazer or Zeo++, or tools in Material Studio, then use the
equations to get the accurate values of the methane total uptake and working
capacity. Of course, the same approach can be expanded for other MOFs with
other topologies. Once equations are developed, there is no need to run simula-
tions and/or perform experimental work.

Application of multiple linear regression analysis for developing equations from
the set of benchmark MOFs

Another case to have a look at is the set of benchmark MOFs, obtained by different
groups around the globe: NiMOF-74, UTSA-20, MOF-505, PCN-14, HKUST-1,
NOTT-109, NU-135, UTSA-80, NOTT-101, UTSA-76, NOTT-103, NOTT-102, NOTT-
122a/NU-125, NU-800, ZJU-36, NU-140, NU-111 and Al-soc-MOF-1. These frame-
works have outstanding methane total uptakes and working capacities, and this
data is considered for applying multiple linear regression analysis for developing
equations. It should be noted that there has been a nice attempt to develop an
empirical equation for the prediction of methane storage capacity at 65 bar and
270 K for the set of benchmark MOFs.** The average deviation was found to be
below 4%, which shows good applicability. The empirical equation can be used
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for predicting the methane storage of MOFs, employing the following parameters:
density of the crystal and pore volume. The set of benchmark MOFs is always of
interest to compare with new MOFs obtained experimentally or theoretically.>*>*
The following geometrical descriptors are employed to develop the equations for
predicting the gravimetric total uptake and working capacity: Sa, Dc, Pv. The data
of the crystal structure parameters, as well as the values of the total uptake (at
a pressure of 65 bar) and working capacity at temperatures of 240 K, 270 K and 298
K (at a pressure range of 65-5 bar), are shown in Table 2.

In contrast to the previous case considered, several equations are developed
for the set of benchmark MOFs, which have different topologies, metals in nodes,
etc., therefore the values of R”>, MAE and RMSE are expected to be more moderate.
The equations are developed for the quick and accurate prediction of the methane
uptake and working capacity employing only three crystal characteristics of MOF
(descriptors): surface area, pore volume and density of the MOFs. The equations
are shown below:

At 298 K

Total_uptake = 233.476 + 0.062 x Sa + 2.595 x Pv — 87.024 x Dc
R® = 0.965; MAE = 14 cm® g~ '; MSE = 291; RMSE = 17.07 cm® g~ ".

Working_capacity = 189.033 + 0.061 x Sa + 4.318 x Pv — 135.846 x Dc

Table 2 Total uptake (at 65 bar) and working capacity (at a pressure range of 65-5 bar) at
temperatures of 240 K, 270 K and 298 K

Working
Total uptake,  capacity, cm®
C1_1_13 g—l g71
Sa, Pv, 240 270 298 240 270 298

MOFs m’g' em’g' De,gem K K K K K K Ref
NiMOF-74 1350 0.56 1.195 251 232 210 67 89 108 47
UTSA-20 1620 0.66 0.909 319 297 253 129 182 187 47
MOF-505 1661 0.68 0.927 300 270 248 97 121 150 50
PCN-14 2000 0.85 0.829 362 326 277 145 185 189 47
HKUST-1 1850 0.78 0.883 369 341 302 120 190 215 47
NOTT-109 2110 0.85 0.790 362 341 306 138 199 215 50
NU-135 2530 1.02 0.751 387 357 306 188 232 226 54
UTSA-80 2280 1.03 0.694 442 390 336 207 258 251 49
NOTT-101 2805 1.08 0.684 472 414 346 231 276 265 50
UTSA-76 2820 1.09 0.699 491 431 368 240 293 282 55
NOTT-103 2958 1.16 0.643 496 440 367 252 306 285 50
NOTT-102 3342 1.27 0.587 532 477 404 310 354 327 50
NOTT-122a/NU- 3120 1.29 0.578 519 469 401 296 334 317 56 and
125 57
NU-800 3149 1.34 0.546 559 452 359 410 370 310 58
ZJU-36 4014 1.60 0.496 617 514 409 458 425 353 59
NU-140 4300 1.97 0.43 728 591 465 551 484 395 60
NU-111 4930 2.09 0.409 856 694 504 653 584 438 47
Al-soc-MOF-1 5585 2.30 0.34 882 712 579 697 632 518 24
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R®> = 0.979; MAE = 12 cm® g~ '; MSE = 208; RMSE = 14.41 cm® g~ .
At 270 K

Total_uptake = 200.152 + 0.057 x Sa + 99.547 x Pv — 78.894 x Dc
R*> = 0.980; MAE = 15 cm® ¢~ '; MSE = 339; RMSE = 18.40 cm® g
Working_capacity = 53.433 + 0.059 x Sa + 121.325 x Pv — 94.025 x Dc

R®> = 0.987; MAE = 14 cm® g~ '; MSE = 282; RMSE = 16.81 cm® g~ .
At 240 K

Total_uptake = 106.071 + 0.040 x Sa + 249.422 x Pv — 35.399 x Dc
R®> = 0.984; MAE = 18 cm® ¢~ '; MSE = 473; RMSE = 21.75 cm® g
Working_capacity = —224.435 + 0.007 x Sa + 379.715 x Pv + 50.945 x Dc

R® = 0.990; MAE = 19 cm® g~ '; MSE = 674; RMSE = 25.97 cm® g~ .

The equations developed in this section will be an opportunity to estimate the
methane total uptake and working capacity of newly designed MOFs. The values
of R*, MAE and RMSE show the robustness of the models obtained. The coeffi-
cients of determination for the working capacity are: R* = 0.979 at T = 298 K, R* =
0.987 at T = 273 K and R> = 0.990 at T'= 240 K. The coefficients of determination
for the total uptake are: R* = 0.965 at T'= 298 K, R> = 0.980 at T = 273 Kand R> =
0.984 at T = 240 K. An interesting trend is observed: the lower the temperature,
the higher the R”.

Application of multiple linear regression for developing equations from the
CoRE MOF database

Multiple linear regression analysis has been employed to develop equations to
describe methane working capacities at 35-5.8 bar considering the database
obtained from high-throughput GCMC calculations®* of the CoORE MOF database
(11 000 MOFs). The details of the methane sorption simulation via GCMC
simulations are presented in that work. The CoRE MOF database considered
contains a wide range of different kinds of MOFs with different topologies, forms
of linkers, metals in nodes, etc., and it is obvious that the values of R?>, MAE and
RMSE will be a bit smaller than in case of studying MOFs with one topology. The
equation developed based on only three geometrical descriptors - surface area,
pore volume and density of the MOFs - is shown below:

Working_capacity (35-5.8 bar) = 39.989 + 0.026 x Sa + 12.789 x Pv — 14.862 x Dc

R*> = 0.899; MAE = 9.23 cm® g~ !; MSE = 158.76; RMSE = 12.60 cm® g~

A much smaller set of MOFs can be studied for the comparison of the models’
performances. The following equation is developed by employing 500 randomly
chosen MOFs for training from the CoRE MOF database:

Working_capacity_500 MOFs (35-5.8 bar) = 51.567 + 0.022 x Sa + 13.989 x Pv —
20.526 x Dc
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R® = 0.898; MAE = 9.52 cm® ¢~ '; MSE = 182.39; RMSE = 13.51 cm® g~ .
The employment of 500 MOFs for training shows that the R* is almost the as
that when employing 11 000 MOFs. The MAE and RMSE are a little bit bigger.
Also, the equation developed via training with 500 MOFs can be applied to the
rest of the CORE MOF database, treating it as a test set. The following values of the
model’s characteristics are obtained:

R? = 0.895; MAE = 9.69 cm® g~'; MSE = 165.29; RMSE = 12.86 cm® g~ .

These results show that the model’s characteristics are very close to those
obtained via the employment of 11 000 MOFs: the R* is a bit smaller, while the
MAE, MSE and RMSE are a little bit bigger.

The accuracy of the prediction may be further enhanced by implementing in
the equation some more geometrical descriptors:* void fraction, LCD (largest
cavity diameter) and PLD (pore limiting diameter)

Working_capacity (35-5.8 bar) = 36.191 + 0.023 x Sa — 3.405 x Pv — 14.153 x
Dc + 35.154 x Vf + 0.689 x LCD — 0.695 x PLD

R® = 0.899; MAE = 9.26 cm® g~ *; MSE = 159.78; RMSE = 12.63 cm® g .

Interestingly, no increase in the accuracy of the model is observed by
employing the equation with six descriptors: the R* values are the same and the
MAE, MSE and RMSE are almost the same. In the case of the equations with three
descriptors, these characteristics are even a little bit better.

Conclusions

This work aimed to show that multiple linear regression analysis is a fast and
highly efficient approach for revealing the methane total uptake and working
capacity of MOFs. Only three variables — geometric descriptors obtained from the
crystal structure information: surface area, pore volume and density of the MOFs
- need to be employed to develop the equations for the methane total uptake and
working capacity values. The analytical equations obtained can predict the
methane total and working capacity values with high accuracy employing only
these three descriptors. The values of the descriptors can be obtained much faster
than the actual GCMC simulations or experimental work for revealing sorption
isotherms, employing simulation packages such as Poreblazer or Zeo++, or tools
in Material Studio.

A set of equations is developed for predicting the methane total uptake and
working capacity for MOFs with the same topology (NbO, in the case studied). The
model exhibits very high accuracy. Several equations are developed for the set of
benchmark MOFs, which have different topologies, metals in nodes, etc. The
values of R*>, MAE and RMSE show the robustness of the models obtained, for
example for the working capacity: R* = 0.979 at 298 K, R> = 0.987 at 273 K and
R*> = 0.990 at 240 K. The GCMC results from the CoRE MOF database are
considered for developing equations for predicting the methane working capacity
which take into account only three parameters. The R* = 0.899, MAE = 9.23 cm?
g' and RMSE = 12.60 cm® g~'. The further enhancement of the model by
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employing more descriptors does not lead to increase in the accuracy of the
model. This is very convenient for both experimentalists or theoreticians to easily
obtain the methane total and working capacities via employing equations and
just having a file of a crystal structure(s) and the values of the three descriptors.
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