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lecular mechanism of SARS-CoV-2
main protease inhibition from 137 crystal structures
using algebraic topology and deep learning†

Duc Duy Nguyen,a Kaifu Gao,b Jiahui Chen,b Rui Wangb and Guo-Wei Wei *bcd

Currently, there is neither effective antiviral drugs nor vaccine for coronavirus disease 2019 (COVID-19)

caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to its high conservativeness and

low similarity with human genes, SARS-CoV-2 main protease (Mpro) is one of the most favorable drug

targets. However, the current understanding of the molecular mechanism of Mpro inhibition is limited by

the lack of reliable binding affinity ranking and prediction of existing structures of Mpro–inhibitor

complexes. This work integrates mathematics (i.e., algebraic topology) and deep learning (MathDL) to

provide a reliable ranking of the binding affinities of 137 SARS-CoV-2 Mpro inhibitor structures. We reveal

that Gly143 residue in Mpro is the most attractive site to form hydrogen bonds, followed by Glu166,

Cys145, and His163. We also identify 71 targeted covalent bonding inhibitors. MathDL was validated on

the PDBbind v2016 core set benchmark and a carefully curated SARS-CoV-2 inhibitor dataset to ensure

the reliability of the present binding affinity prediction. The present binding affinity ranking, interaction

analysis, and fragment decomposition offer a foundation for future drug discovery efforts.
1 Introduction

Starting in late Dec, 2019, the COVID-19 pandemic caused by
new severe acute respiratory syndrome coronavirus (SARS-CoV-
2) has infectedmore than 22million individuals and has caused
more than 777 000 fatalities in all of the continents and over
213 countries and territories by August 19th, 2020. Under the
current global health emergency, researchers around the world
have engaged in the investigation of the different drug targets of
SARS-CoV-2, such as the main protease (Mpro, also called
3CLpro), papain-Like protease (PLpro), RNA-dependent RNA
polymerase (RdRp), 50-to-30 helicase protein (Nsp13) to seek
potential cures for this serious pandemic. To date, although
there are some vaccines undergoing the Phase III trials,1 their
safety and efficacy are still unclear.2

The main protease, one of the best-characterized targets for
coronaviruses, attracts lots of research attention because it is
entucky, KY 40506, USA
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very conservative and distinguished from any human gene. A
recent study shows that although the overall sequence identity
between SARS-CoV and SARS-CoV-2 is just 80%, the Mpro of
SARS-CoV-2 shares 96.08% sequence identity to that of SARS-
CoV.3 Therefore, we hypothesize that a potent SARS Mpro

inhibitor is also a potent SARA-CoV-2 Mpro inhibitor.
At this moment, more than 300 potential SARS-CoV Mpro

inhibitors with its binding affinities are available in ChEMBL
database4 which can be considered as the potential SARS-CoV-2
Mpro inhibitors. Recently, total 146 crystal structures of SARS-
CoV-2 Mpro with its ligand complexes are released on the
Protein Data Bank (PDB).5 Among them, 137 crystal structures
have no available binding affinities reported for various
reasons. However, the central dogma of drug design and
discovery concerns the molecular mechanism and binding
affinity of drug target interactions. Knowing the binding affin-
ities and their ranking of 137 SARS-CoV-2 Mpro inhibitors is of
great signicance to the future design of anti SARS-CoV-2 drugs.

In this work, for the rst time, we predict the binding
affinities of these 137 Mpro–inhibitor complexes by reformulat-
ing algebraic topology-based mathematics-deep learning
(MathDL) models, which have been the top competitor in D3R
Grand Challenges, a worldwide competition series in computer
aided drug design in the past three years.6 We generate reliable
poses for 141 Mpro inhibitors with binding affinities but without
complex structures. Together with 44 other complexes, we
compose a set of 185 Mpro–inhibitor complexes, which is paired
with 17 382 protein–ligand complexes in PDBbind 2019 general
set. These datasets are utilized to construct 11 MathDL models
This journal is © The Royal Society of Chemistry 2020
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Table 1 Binding affinities of top 10 complexes in SARS-CoV PBD-
noBA dataset predicted by our MathDL. “Pred. BA” indicates the pre-
dicted binding free energy in kcal mol�1 and “Pred. IC50” is the cor-
responding IC50 in mM unit via the following conversion: Pred. IC50 ¼
10Pred. BA/1.3633 � 106

PDBID Pred. BA
Pred.
IC50 PDBID Pred. BA

Pred.
IC50

7c8t �8.90 0.30 6z2e �8.43 0.66
5rgl �8.50 0.58 6xbi �8.34 0.76
6xhm �8.50 0.58 6xmk �8.33 0.78
7bqy �8.49 0.59 5rh7 �8.32 0.79
5rfr �8.45 0.63 6xbh �8.27 0.86
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in single-task and multitask settings.6 One of these 11 MathDL
models has been validated by using the PDBbind v2016 core set
benchmark, achieving the top performance over all exiting
scoring functions. The other ten MathDL models have cross-
validated on a set of 185 Mpro–nhibitor complexes, showing
an averaged Pearson's correlation coefficient of 0.73.

Notably, for covalent inhibitors, the scheme of covalent
irreversible inhibition of SARS-CoV/SARS-CoV-2 Mpro is pre-
sented below:

Eþ I )*
k1

k2
EI!k3 E� I

The inhibitor rst binds to the protease noncovalently, then
a nucleophilic attacking by Cys145 leads to the formation of
a stable covalent bond between the protease and the inhibitor.7,8

The interaction depends on both the equilibrium-binding
constant Ki (designated as k1/k2) and the inactivation rate
constant for covalent bond formation k3. In this work, the
binding affinity/IC50 assesses the rst step to form noncovalent
binding.

In a nutshell, the present work provides reliable binding
affinity predictions and ranking of 137 SARS-CoV-2 inhibitors
that have crystal structures. It also offers data curation and
validated models for exploring potential SARS-CoV-2 Mpro

inhibitors. Furthermore, this work explores different possible
binding regions on the SARS-CoV-2 main protease and decode
the most favorable molecular fragments for the inhibitor
design.
2 Results and discussions
2.1 Results

This section is devoted to the utilization of our MathDL models
developed in Section 3.3 to predict the binding affinities and
their ranking of SARS-CoV-2 inhibitors that do not have re-
ported experimental affinities. To reduce the role of 3D pose
prediction errors in our model, we use the SARS-CoV-2 inhibi-
tors with X-ray structures available in the PDB for our study. We
manually search these ligands on the PDB and arrive at a set
consisting of 137 SARS-CoV-2 Mpro inhibitors having X-ray
crystal structures but lacking of experimental binding affini-
ties. We name this set SARS-CoV PDB-noBA (see Table 3). In this
experiment, we develop a MathDL model optimized from
PDBbind v2016 core set (see Section 3.3.1), ve MathDL-ALL
and ve MathDL-MT models obtained from 5-fold study on
the SARS-CoV BA set (see Section 3.3.2). The nal predicted
binding affinity is the consensus of these 11models. The top ten
inhibitors indicated by our models are shown in Table 1.

The most potent SARS-CoV-2 inhibitor found by our MathDL
models is the inhibitor Nol in complex 7c8t. Nol was synthe-
sized by Yang and his colleagues,9 Nol is found remarkable
activities against SARS-CoV and HCoV.9 Specically, the disso-
ciation constant Ki of Nol was found to be 0.053 mM against
SARS-CoV.9 Our MathDL reveals that Nol still inhibits SARS-
CoV-2 main protease with a potent affinity at 0.30 mM.
This journal is © The Royal Society of Chemistry 2020
Another important top potent SARS-CoV-2 inhibitor found by
our models is the Michael acceptor inhibitor N3 in complex
7bqy. Designed by Yang and his colleagues,8 N3 was found to
have viral activities against different coronavirus Mpro such as
SARS-CoV and MERS-CoV.8,10 Specically, the dissociation
constant Ki of N3 was found to be 9.0 mM against SARS-CoV.8

Our MathDL reveals that N3 still inhibits SARS-CoV-2 main
protease with an even better affinity at 0.59 mM. This nding is
consistent with the literature work11 showing that N3 is a potent
inhibitor of COVID-19 virus Mpro.

The inhibitor Qys in the complex 6xmk is also noticeable.
Our predicted IC50 is 0.78 mM. Soon aer we made the predic-
tion, on August 12th, 2020, Rathnayake et al.12 released another
Qys-main protease complex with PDB ID 6w2a and also reported
the IC50 of Qys to SARS-CoV-2 is 0.45 mM, which is close to our
prediction.

It is worth pointing out, except for the inhibitor T9j in the
complex 5rg1, the rest of inhibitors reported in Table 1 are
covalent inhibitors, which irreversibly form covalent bonds with
Cys145 of the main protease (see discussion in Section 2.2.2).
However, our models only predict the non-covalent binding
affinity which is measured before the enzyme deactivation. The
predicted binding affinities of all 137 complexes in SARS-CoV
PBD-noBA dataset from various MathDL models are presented
in Table S8 in ESI.† In this table, we also supply the synthetic
accessibility score (SAS), partition coefficient log P, and solu-
bility log S for each small molecule. Except for SAS obtained via
RDKit,13 log P and log S are evaluated by our TopP-S model.14
2.2 Discussion

2.2.1 Binding site analysis. Based on the crystal structure
information of 137 complexes in SARS-CoV PDB-noBA set, we
have identied 13 distinct binding site regions of the SARS-CoV-
2 main protease as illustrated in Fig. 1. Those binding pockets
are denoted by Pi, i ¼ 1, 2, ., 13. Fig. 2a reveals that binding
pocket P1 is the most common binding region of the SARS-CoV-
2 main protease, which attracts around 80.2% of ligands in the
SARS-CoV PDB-noBA data set of 137 complexes. This nding is
no surprise since the binding pocket P1 shares similar active
sites to its predecessor, i.e. SARS-CoV Mpro. Specically, P1
encompasses His141 and Cys145 catalytic dyad which are
imperative to the substrate-binding mechanism.8 In additions,
Chem. Sci., 2020, 11, 12036–12046 | 12037
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Fig. 1 All binding site pockets observed from 137 inhibitors in SARS-
CoV PDB-noBA set.
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the substrate-binding residues Tyr161 and His163 (ref. 15) are
covered in P1. Binding pockets P2, P3, P5, P7, P8, and P10 are the
least favor sites consisting of only one ligand. The rest of the
binding pockets involve no more than 7 ligands. To study the
correlation of the binding regions to the binding free energy, we
present the box plot in Fig. 2b to illustrate the energy values
through their quartiles.

The prevailing binding pocket P1 is the best region on the
SARS-CoV-2 Mpro for inhibitor design with the median binding
energy being �7.22 kcal mol�1. Nol is the best inhibitor
candidate for the binding site P1 with predicted affinity found to
be �8.90 kcal mol�1. Other binding regions such as P4, and P11
Fig. 2 (a) Distribution of 137 ligands across 13 distinct binding sites; (b) Bo
binding site.

12038 | Chem. Sci., 2020, 11, 12036–12046
are less common but show their adequate effects on the binding
mechanism with their best energy binding affinities calculated
at �7.28 kcal mol�1 and �6.80 kcal mol�1, respectively. These
potential binding sites can guide drug combination to inhibit
coronavirus Mpro effectively.

2.2.2 Interaction analysis. By looking further into the
interactions between the top inhibitors and the main protease,
we have found that Nol, V2m, N3 are peptidomimetic inhibi-
tors, they form as many as 8, 8, 9 hydrogen bonds respectively to
the nearby residues and also all form 1 covalent bond with
Cys145 as listed in Table 2 and depicted in Fig. 3. All these
hydrogen bonds justify their potency of the rst step of non-
covalent binding to the main protease complex and conrms
the robustness of our MathDLmodels; the covalent bondsmake
the binding irreversible. We also notice that these three inhib-
itors share two common hydrogen bonds to His163, His164 (see
Table 2, Fig. 3a, c and d). Therefore, they have some similar
predicted binding energies, especially 6xhm and 7bqy at
�8.50 kcal mol�1 and �8.49 kcal mol�1, respectively.

This examination manifests how well our models preserve
and capture the physical and chemical properties described in
intermolecular bonding interactions. Furthermore, the ligand
T9J that binds to Mpro in complex 5rg1 with a quite close
binding energy at �8.50 kcal mol�1 forms different hydrogen
bonds in comparison to three previously mentioned inhibitors
(see Table 2). Since our models only concern the non-covalent
binding affinity, the lack of covalent bond in 5rg1's interac-
tions does not downgrade its binding strength. With two rela-
tively large hydrogen bonding distances (O2-His163: 3.05 Å, O3-
Glu166: 3.38 Å (see Fig. 3d)), the binding affinity of 5rg1 is still
comparable to the top inhibitors indicating the important roles
in acquiring the hydrogen bonds to these residues in the main
protease's binding process.

In the top 10 inhibitors as listed in Table 1, T9J in the
complex 5rg1 is only one non-covalent inhibitor. The rest
belongs to the class of targeted covalent inhibitors (TCI) in
which they interacts with the protein residues, i.e., cysteine, to
form a covalent complex strongly neutralizing target's function.
However, the major disadvantage of TCIs is the association with
the high toxicity risks.16 TCIs' strong covalent bond can irre-
versibly modify the unintended protein targets in the human
body. As a result, the top covalent inhibitors in SARS-CoV PBD-
noBA dataset may have little chance to become approved
x plot of predicted binding energies (kcal mol�1) of all inhibitors in each

This journal is © The Royal Society of Chemistry 2020
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Table 2 Interaction analysis in the binding pockets of top 4 complexes in term of binding affinity predicted by our MathDL models

PDB ID Ligand ID Hydrogen bond Covalent bond

7c8t Nol His163, His164, Cys145, Gln189, Gly143, Glu166 Cys145
5rg1 T9J His163, Glu166
6xhm V2m His163, His164, Cys145, Gln189, Phe140 Cys145
7bqy N3 His163, His164, Cys145, Gln189, Thr190, Glu166, Phe140, Gly143 Cys145
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market drugs in comparison to their non-covalent counterparts
such as T9J in 5rg1.

Due to the popularity of the binding site P1 among 137
interested inhibitors, wemainly analyze the interaction network
around the residues in that region. Out of 110 molecules
binding to P1, there are 103 inhibitors forming at least one
hydrogen bond to the nearby amino acid in the SARS-CoV-2
main protease. We have identied 20 different residues in the
binding pocket P1 composing hydrogen bonds to these small
Fig. 3 The interactions between the top 4 inhibitors in the SARS-CoV PB
(d) 7bqy. Inhibitors are shown in the purple color. Hydrogen bonds are m
blue lines. All interactions are shown with the distance information in Å.

This journal is © The Royal Society of Chemistry 2020
molecules. Fig. 4 illustrates the frequency of these 20 residues
across 110 inhibitors. Based on Fig. 4, Gly143 residue is the
most attractive site to form the hydrogen bond. It appears in
53.6% of 110 intermolecular bonding interactions, followed by
Glu166 residue with a frequency of 39.1%; residue Cys145 and
His163 also occupy 38.2% and 30.9%, respectively. It is worth
noting when these molecules form a hydrogen bond with
Cys145, they also constitute another hydrogen bond with
Gly143. In all cases, both these residues share the same
D-noBA dataset and SARS-CoV-2 Mpro: (a) 7c8t; (b) 5rg1; (c) 6xhm; and
arked in dashed green lines, and covalent bonds are depicted in solid

Chem. Sci., 2020, 11, 12036–12046 | 12039
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Fig. 4 Popularity of amino acids in the binding site P1 constituting the
hydrogen bonds with ligands.
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hydrogen-bond acceptor. Besides the hydrogen bond network,
71 ligands in the SARS-CoV PDB-noBA dataset form a covalent
bond to g-sulfur of Cys145. Except the second one, all the others
in the top 10 inhibitors are equipped with that covalent bond
(see Table S8 in ESI†).

Furthermore, we are interested in the binding energy
distribution associated with the interaction network. Fig. 5
depicts the violin plot of that distribution across four cate-
gories, namely no H-bond (no hydrogen bond), H-bond (at least
one hydrogen bond), no cov. bond (no covalent bond), and cov.
bond (at least one covalent bond). Hydrogen bond interactions
that are expected to play an important role in the binding
mechanism are well captured in our MathDL models. Speci-
cally, while the average energy of inhibitors having no hydrogen
bond is �6.62 kcal mol�1, the average energy of ones with
hydrogen bond is as low as �7.23 kcal mol�1.

It is noted that our MathDLs only measure the non-covalent
binding affinity. The covalent bond appearing at the nal
covalent complex is not properly accounted for in our frame-
work. Therefore, it is expected that our models sometimes
overestimate the covalent-bond inhibitors over the non-
covalent-bond candidates. Fig. 5 reveals molecules in the
Fig. 5 Violin plot of the predicted binding energies for 110 inhibitors
binding to the binding site P1 classified into 4 categories, namely no H-
bond (no hydrogen bond), H-bond (at least one hydrogen bond), no
cov. bond (no covalent bond), cov. bond (at least one covalent bond).
The mean is in the orange color, the median is in the blue color, and
the minimal and the maximal values are both in the black color.

12040 | Chem. Sci., 2020, 11, 12036–12046
group of covalent bonds generally are predicted with lower
binding energy with an average being �7.42 kcal mol�1 in
comparison to �6.89 kcal mol�1 averagely measured on ones
without covalent bonds.

2.2.3 Fragment analysis. To design the lead molecules, it is
of importance to have promising fragments from existing
inhibitors against the drug targets. Therefore, in the present
work, we study all the fragments decomposed from 110 inhib-
itors attached to the binding site P1. To carry out this task, we
utilize BRICS algorithm17 via RDkit.13 In BRICS model, there are
16 chemical environments indicated by linkers denoted by L1,
L2,., L16. The BRICS decomposition gives raise to a total of 185
unique fragments, which are all presented in Table S9 in ESI.†
Fig. 6 illustrates top 12 common fragments in terms of their
frequencies. Noting that the second frequent fragment, L1–
C(C)]O, oen constitutes a hydrogen bond with Gly143 and in
many cases forms a covalent bond with Cys145.

3 Materials and methods
3.1 Datasets

Our deep learning-based scoring function, MathDL, was trained
on public databases including PDBbind18 and ChEMBL.4 The
PDBbind sets contain all complexes with crystal structures
deposited in the PDB with the binding affinities not limited to
Kd, Ki, and IC50 reported in the literature. In this work, we
employ the PDBbind v2019, the latest version of its generation.
The v2019 version of the PDBbind consists of 17 679 protein–
ligand complexes. However, the data preprocessing of the
MathDL32 only retains 17 382 complexes. Among them, there
are 10 485 ligands measured in Kd/Ki and 6537 ligands
measured in IC50.

ChEMBL is another manually curated database of bioactive
molecules. Currently, ChEMBL contains more than 2 million
compounds in the SMILES string format. Excluding 30 main
protease inhibitors in PDBbind data, we have found other 277
small molecules on ChEMBL with reported Kd/IC50. Addition-
ally, we have found more than 300 other SARS-CoV main
protease inhibitors from literatures.18–20,25–31 In total, there are
more than 600 ligands bound to SARS-CoV/SARS-CoV-2 main
protease having the experimental binding affinities; among
them, there are 44 crystal structures. For compounds without
the crystal structures, MathPose6 is utilized to generate their 3D
conformations. The predicted 3D coordinates of these struc-
tures are presented in the SDF format and available in ESI.†
Currently, there are roughly 137 ligands forming crystal
complexes with the SARS-CoV-2 main protease on PDB without
the report of the experimental inhibitor activities. Most of them
are deposited by the PanDDA analysis group (https://
pandda.bitbucket.io/#).

To serve model validation purposes, we classify the selected
data into ve different groups as listed in Table 3. Specically,
PDBbind v2019 is the biggest set in this compilation with its
PDB IDs and experimental binding affinities listed in Table S1
in ESI.† PDBbind v2016 core set is a subset of PDBbind v2019
and is formed by 290 complexes representing all protein classes
in the rened set of PDBbind v2016.18,33 The PDB IDs of all
This journal is © The Royal Society of Chemistry 2020
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Fig. 6 Fragment frequencies based on BRICS decomposition of 110 inhibitors of binding site pocket P1. Li is the link atom of a certain type
described in ref. 17.

Table 3 A summary of our selected data sets

Data name Data size Descriptions References

PDBbind v2019 17 382 Partial PDBbind general set v2019 18
PDBbind v2016 core set 290 PDBbind v2016 core set 18
SARS-CoV PDB 192 Inhibitors of SARS-CoV/SARS-CoV-2

Mpro having X-ray crystal structures
5, 19 and 20

SARS-CoV PDB-BA 44 Inhibitors of SARS-CoV/SARS-CoV-2
Mpro having X-ray crystal structures
and experimental binding affinities

5, 18–23

SARS-CoV PDB-noBA 137 Inhibitors of SARS-CoV-2 Mpro

having X-ray crystal structures but
lacking of experimental binding
affinities

5, 18–20, 24

SARS-CoV 2D 141 Inhibitors of SARS-CoV/SARS-CoV-2
Mpro having only 2D structures

4, 19, 20, 25–31

SARS-CoV BA 185 Inhibitors of SARS-CoV/SARS-CoV-2
Mpro having experimental binding
affinities

5, 18–20, 26–31
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complexes in the PDBbind v2016 core set are provided in Table
S2.†We also collect all Mpro complexes of SARS-CoV/SARS-CoV-2
on the PDB, denoted by SARS-CoV PDB, which results in a total
of 192 structures (see Table S3†). Among them, there are 44
ligands with the report of experimental binding affinities
denoted by SARS-CoV PDB-BA (see Table S4†). Furthermore, we
are interested in the set of SARS-CoV-2 Mpro complexes in the
aforementioned SARS-CoV PDB set but their affinities are not
presented or undisclosed. We call this set SARS-CoV PDB-noBA
with PDB IDs listed in Table S5.† To enrich our training data
targeting SARS-CoV/SARS-CoV-2 main protease inhibitors, we
gather some inhibitors reported on the literature.4,25 For those
compounds with only 2D information, we limit ourselves to
ones having the similarity score based on the path-based
ngerprint FP2 no lower than 0.6 to at least one inhibitor in
This journal is © The Royal Society of Chemistry 2020
the SARS-CoV PDB set. As a result, we arrive at a set of 141
structures named SARS-CoV 2D (see Table S6†). Combining
SARS-CoV PDB-BA and SARS-CoV 2D data sets, we nalize
a reliable database focusing on SARS-CoV/SARS-CoV-2 main
protease inhibitors. Notice that the binding affinities in this set
are all reported in IC50. Table S7 in ESI† presents the PDB IDs as
well as the experimental binding energies of these ligands.
3.2 Methods

3.2.1 MathDL. The MathDL models developed in this work
are reformulated from our early model bearing the same name.
MathDL was designed for the prediction of various druggable
properties of 3Dmolecules.6 In the past three years, MathDL has
been proved to be the top competitor in D3R Grand Challenges
Chem. Sci., 2020, 11, 12036–12046 | 12041
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Fig. 7 A framework of MathDL energy prediction model which integrates advanced mathematical representations with sophisticated CNN
architectures.
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(https://drugdesigndata.org/about/grand-challenge), a world-
wide competition in computer-aided drug design. In the present
work, we have, for the rst time, develop a multitask MathDL
(MathDL-MT) to handle theMpro inhibitor dataset. We have also
extended our earlier MathDL by including all different datasets
(MathDL-All). Fig. 7 depicts the framework of the MathDL in
which the element-specic algebraic topological representa-
tions are integrated with the convolutional neural network
(CNN) aiming to predict varied druggable properties such as
toxicity, binding affinities, etc.

3.2.1.1 Algebraic topology-based representations. Algebraic
topology studies the topological spaces with the use of abstract
algebra, which can dramatically simplify the geometric
complexity. Persistent homology (PH) is one of the algebraic
topology approaches which has the capacity to track the mul-
tiscale topological information over different scales along with
ltration by characterizing independent components, rings,
and higher dimensional voids in space.34 In this section, we will
briey review the algebraic topology-based representations.
Additionally, since we are dealing with the protein–ligand
system, therefore, the biological considerations will take into
account as well.

Simplex. The q-simplex denoted as sq is the convex hull of q +
1 affinely independent points in ℝnðn$ kÞ. For example, the 0,
1, 2, and 3-simplex is considered as a vertex, an edge, a triangle,
and a tetrahedron, respectively. We call the convex hull of each
non-empty subset of q + 1 points the face of sq, and each points
are also called the vertices.

Simplicial complex. A set of simplices is a simplicial complex
denote K which satises that every face of a simplex sq ˛ K is
also in K and the non-empty intersection of any two simplices in
K is the common face for both.
12042 | Chem. Sci., 2020, 11, 12036–12046
Chain complex. A formal sum of q-simplices in simplicial
complex K with coefficients in an algebraic eld (typically ℤ2) is
a q-chain. A set of all q-chains of the simplicial complex K
equipped with an algebraic eld is called a chain group and
denoted as Cq(K). The boundary operator is dened by vq: Cq(K)
/ Cq�1(K) to relate the chain groups. More specically, we
denote sq ¼ [v0, v1, ., vq] for the q-simplex spanned by its
vertices, and then the boundary operator can be represented as:

vqsq ¼
Xq

i¼0

ð�1Þisq�1
i: (1)

Here, sq�1
i ¼ ½v0;.; v̂i;.; vq� is the (q� 1)-simplex with vi being

omitted. The sequence of chain groups connected by boundary
operators is called the chain complex and expressed as:

/ �!vqþ2

Cqþ1ðKÞ �!vqþ1

CqðKÞ!vq Cq�1ðKÞ �!vq�1

/

The q-cycle group Zq(K) and the q-boundary group Bq(K) are
dened as Zq(K) ¼ ker(vq) ¼ {c ˛ Cq(K)|vqc ¼ B} and Bq(K) ¼
im(vq+1) ¼ {vq+1c|c ˛ Cq+1(K)}. The q-th homology group is the
quotient group Hq(K) ¼ Zq(K)/Bq(K). Moreover, the rank of q-th
homology group can be computed as rankHq(K) ¼ rankZq(K) �
rankBq(K), which is denoted as the q-th Betti number bq. To be
notice that the q-th Betti number count the number of q-
dimensional holes that can not be continuously deformed to
each other.

Persistent homology. A ltration of a simplicial complex K is
a nested sequence of subcomplexes of K such that B ¼ K0 4 K1

4 K2/4 Km ¼ K. Then the p-persistent qth homology group of
Kt is dened as:

Hq
p(Kt) ¼ Zq(Kt)/(Bq(Kt+p) X Zq(Kt)). (2)
This journal is © The Royal Society of Chemistry 2020
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Here the rank of Hq
p(Kt) counts the number of q-dimensional

holes in Kt that are still alive in Kt+p, which is called the p-
persistent qth Betti number. The persistent homology not only
records the topological information at a specic conguration,
but also tracks the changes along with the ltration parameters.
More specically, the topological changes will be preserved in
the persistent barcodes. In MathDL, we make use of the
persistent homology barcodes by dividing them into bins and
calculating the birth, death, and persistence incidents in each
bin to enrich our algebraic topological representations.

3.2.1.2 Element specic considerations. The protein–ligand
complex is structural and also biological. The persistent
homology provides a theoretical approach to encode high-
dimensional spatial data of protein–ligand complexes into
algebraic topological representations. In this section, we
address the biological considerations for biomolecular
complexity. There are many kinds of interactions that exist in
the protein–ligand complex, such as electrostatics, hydrogen
bonds, and hydrophobic effects. Although persistent homology
can capture the interactions among the nearest neighbors, the
long-range interactions will be hindered. This difficulty can be
avoided via the deployment of the element-specic attention.32

There are 4 commonly atom types in protein, namely C, N, O, S,
and there are 11 commonly atom types in ligand, including
C, N, O, S, P, F, Cl, Br, I, H, B. We include Boron in the ligand
atom type consideration since it appears inmore than 200 small
compounds in our training data. The general framework of
MathDL is depicted in Fig. 7 under exemplied steps. In addi-
tion, the details of the deep learning architecture of the current
MathDL is offered in Fig. S1.† For the details of feature
descriptions as well as the deep learning architecture, inter-
ested readers are referred to our previous work.32

3.2.2 MathPose. MathPose, a 3D pose predictor that
converts SMILES strings into 3D poses with references of target
molecules, is the top performer in D3R Grand Challenge 4 (GC4)
in predicting the poses of 24 beta-secretase 1 (BACE) binders.6

For one SMILES string, around 1000 3D conformations can be
generated by various docking soware tools such as GOLD,35

Autodock Vina,36 and GLIDE.37 Moreover, a selected set of
known complexes is re-docked by three aforementioned dock-
ing soware packages to generate at least 100 decoy complexes
per input ligand used in the machine learning training set. The
machine learning labels will be the calculated root mean
squared deviations (RMSDs) between the decoy and native
structures for the training data of the pose selection task.
Furthermore, MathDL models will be set up and applied to
select the top-ranked pose for the given ligand. Besides the GC4
challenge, our models have outperformed state-of-the-art
scoring functions at the docking power challenge on CASF-
2007 and CASF-2013 benchmarks.33 Those established results
attest to the credibility of our MathPose on the 3D structure
prediction of small molecules.
3.3 Validations

3.3.1 PDBbind v2016 core set benchmark. In this valida-
tion task, we will testify our model against 290 complexes in the
This journal is © The Royal Society of Chemistry 2020
PDBbind v2016 core set. This is a prevalent test set to assert the
scoring ability of a binding affinity prediction model and has
attracted lots of research groups to devote the effort to improve
the Pearson's correlation coefficient (Rp) and Kendall's tau (s)
on this core set performance.18,42,43 In the current work, we
merge the PDBbind v2019, SARS-CoV PDB-BA, and SARS-CoV 2D
sets but removing the duplicates and excluding the PDBbind
v2016 core set complexes to attain a training set of 17 211
complexes. MathDL with the architecture described in Section
3.2.1 is trained on those complexes. The resulting model is
utilized to predict the binding affinity of 290 structures in the
PDBbind v2016 core set.

With the purpose of exploring the most optimal model for
this benchmark, MathDL is trained for 1000 epochs. Then, we
pick the epoch based on the root-mean-squared error (RMSE) of
the PDBbind v2016 core set prediction. We have found that
MathDL achieves the smallest RMSE in this experiment at 140
epochs. Specically RMSE, Rp, and s metrics on the v2016 core
set are 1.56 kcal mol�1, 0.858, and 0.671, respectively. Mean-
while, the training accuracy is 0.387 kcal mol�1 in terms of
RMSE and its Pearson's correlation coefficient is Rp ¼ 0.994.
These performances reveal that our MathDL converges very fast
and with only 140 epochs and maintains a good balance
between training and testing accuracies. This is a state-of-the-
art performance since our MathDL is ranked in the second
place in comparison to 33 other scoring functions (see Fig. 8). It
is noted that the top model is TopBPcon. published in our
previous work32 with Rp ¼ 0.861. TopBPcon. is the consensus of
gradient boosted tree and deep learning-based models. If only
the deep learning framework is considered, the performance of
TopBP (denoted by TopBP-DL) on the core set of PDBbind v2016
is Rp ¼ 0.848.

It is worth mentioning that except for our MathDL, all
machine learning-based scoring functions listed in Fig. 8 were
trained on the PDBbind v2016 rened set of 3767 complexes. As
mentioned above, the current MathDL is compiled on a much
larger training set comprised of 17 211 complexes selected from
PDBbind v2019 and SARS-CoV BA data. Even the present
MathDL has not outperformed its predecessor, i.e., TopBPcon.,
MathDL is still a preference model since it is trained on
a diverse data set covering various protein families and different
binding energy ranges. As a result, it is expected to deliver more
reliable predictions on the SARS-CoV-2 inhibitor, especially
when this main protease family is not included in the training
data of previous TopDL models. The resulting MathDL model is
labeled as MathDL-Core2016 and is utilized to predict affinities
of complexes in SARS-CoV PDB-noBA in Section 2.1.

3.3.2 5 fold cross-validation on SARS-CoV BA set. In this
section, we testify the performance of our MathDL against 185
inhibitors in the SARS-CoV BA set aforementioned in Table 3.
Among those ligands, there are 44 X-ray crystal structures and
the rest are in 2D SMILES strings. We employ MathPose to
predict 3D structures of those 2D ligands. To carry out the
validation, we randomly split the SARS-CoV BA set into 5 non-
overlapped folds. In each fold prediction task, MathDL trains
on the partial data of SARS-CoV BA in conjunction with
PDBbind v2019 set. This situation results in two different ways
Chem. Sci., 2020, 11, 12036–12046 | 12043
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Fig. 8 The Pearson correlation coefficient of various scoring functions on PDBbind v2016 core set benchmark. Our MathDL is in red. The
performances of other models that are in green are taken from ref. 18, 32, 38–41. TopBPcon., the consensus model in our published work,32

attains the highest Rp at 0.861. The current MathDL is followedwith the second highest Rp at 0.858 and RMSE¼ 1.56 kcal mol�1. The third place in
the list is another TopBPmodel, TopBP-DL, solely based on the deep learning architectures and its reported Rp is 0.848.32 It is noted that all of the
machine learning based scoring functions in this comparison were trained on the PDBbind v2016 refined set of 3767 complexes except for our
MathDL. Explicitly, MathDL is trained on a much larger training set consisting of 17 211 complexes picked out from the PDBbind v2019 set and
SARS-CoV BA set.
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of training our MathDL model. The rst approach is a tradi-
tional MathDL architecture with the training set combining
both SARS-CoV BA and PDBbind v2019 complexes. The second
model makes use of multi-task learning.44 In each epoch, the
weights of the MathDL architecture are learned through the
information from PDBbind v2019 set, then only the fully con-
nected layers are trainable when learning SARS-CoV BA struc-
tures. Finally, we come up with 10 different MathDL models in
which the traditional MathDL frameworks are labeled as
MathDL-All-i and multi-task MatDL is named MathDL-MT-i
with i running from 1 to 5. In each model, aer 100 epochs, we
start monitoring which epoch that helps our model achieve the
smallest RMSE on the test set.

Table 4 reveals that MathDL-All models are well trained with
the averaged accuracy RMSE ¼ 0.286 kcal mol�1, Pearson's
correlation coefficient Rp ¼ 0.994, and Kendall's tau s ¼ 0.934.
Their averaged performances on test data across 5-fold of the
SARS-CoV BA set are found to be Rp ¼ 0.729, s ¼ 0.540, and
Table 4 5-fold Performances of MathDL-All and MathDL-MT on
SARS-CoV BA set

MathDL-ALL MathDL-MT

Rp s RMSE Rp s RMSE

Fold 1 (train) 0.992 0.923 0.327 0.996 0.949 0.253
Fold 1 (test) 0.792 0.534 0.682 0.818 0.534 0.680
Fold 2 (train) 0.995 0.943 0.266 0.996 9.948 0.236
Fold 2 (test) 0.625 0.498 0.866 0.689 0.538 0.826
Fold 3 (train) 0.991 0.917 0.367 0.994 0.934 0.327
Fold 3 (test) 0.771 0.572 0.758 0.767 0.593 0.802
Fold 4 (train) 0.996 0.948 0.240 0.997 0.951 0.177
Fold 4 (test) 0.618 0.397 0.874 0.642 0.472 0.901
Fold 5 (train) 0.995 0.941 0.231 0.991 0.921 0.380
Fold 5 (test) 0.838 0.699 0.767 0.719 0.524 0.900
Average (train) 0.994 0.934 0.286 0.995 0.941 0.275
Average (test) 0.729 0.540 0.789 0.727 0.532 0.822

12044 | Chem. Sci., 2020, 11, 12036–12046
RMSE ¼ 0.789 kcal mol�1. These results endorse the reliability
of these models in the binding affinity prediction of SARS-CoV/
SARS-CoV-2 inhibitors. Table 4 also lists the training and testing
performances of ve multi-task learning models. The averaged
training performance of the MathDL-MT model is Rp ¼ 0.995, s
¼ 0.941 and RMSE ¼ 0.275 kcal mol�1. The accuracy of the
multi-task architecture on the test sets is similar to MathDL-All
with Rp ¼ 0.727, s ¼ 0.532, and RMSE ¼ 0.822 kcal mol�1. With
these promising results, it is encouraging to carry out MathDL
models to predict unknown binding affinities of SARS-CoV/
SARS-CoV-2 inhibitors. It is worth noting that if the 5-fold
cross-validation is conducted purely on the SARS-CoV BA set,
the average Rp and s are as low as 0.561 and 0.388, respectively.
These results strongly support the inclusion of diverse infor-
mation such as PDBbind v2019 in conjunction with sophisti-
cated deep learning architectures to achieve the accurate
binding energy prediction of Mpro inhibitors.
4 Conclusion

SARS-CoV-2 main protease (Mpro) is the most favorable target
for COVID-19 drug discovery due to its conservative nature and
low similarity with human genes. Structure and binding affinity
of protein–drug complexes are of paramount importance for
understanding the molecular mechanism in drug discovery.
However, there are only two SARS-CoV-2 Mpro inhibitor struc-
tures available with binding affinities, highlighting current
challenges in COVID-19 drug discovery.

This work presents the reliable binding affinity prediction
and ranking of 137 Mpro–inhibitor crystal structures that have
no reported experimental binding affinity. We rst curate a set
of more than 600 Mpro inhibitors with binding affinities from
public resources, such as PDBbind, ChEMBL and the scattered
literature. Among these inhibitors, 141 are retained based on
their high similarity with available Mpro–inhibitor complex
structures and built with three dimensional (3D) poses using
This journal is © The Royal Society of Chemistry 2020
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our MathPose.6 Together with 44 another SARS-CoV or SARS-
CoV-2 Mpro–inhibitor complexes, we compose a training set of
185 reliable SARS-CoV-2 Mpro–inhibitor complexes. Our earlier
MathDL models are reformulated with algebraic topology to
accommodate 119 new complexes and 17 382 complexes from
the PDBbind v2019 general set in both single-task andmultitask
settings, which have never been available before. The resulting
MathDL models are rigorously validated via PDBbind v2016
core set benchmark in which it outperforms state-of-the-art
models in the literature. Most importantly, our MathDL ach-
ieves promising cross-validation accuracies on the SARS-CoV
family inhibitors with the averaged Pearson's correlation coef-
cient as high as 0.73.

Additionally, the present work unveils that Gly143 of Mpro is
the most attractive region to form hydrogen bonds, followed by
Glu166, Cys145, and His163. There are 71 inhibitors interacting
with SARS-CoV-2 Mpro to form covalent complexes. Those
covalent bonds are mostly composed between dicarbon
monoxide groups in inhibitors and g-sulfur on Cys145. There
are only one non-covalent complex in our top 10 ranked, namely
5rg1. To provide a potential resource for lead molecule design,
we employ the BRICS algorithm to decompose all the inhibitors
of the prominent binding site on Mpro and obtain 185 unique
fragments.

The predicted binding affinities and their ranking of 137
Mpro–inhibitor crystal structures, the bonding analysis, and the
fragment decomposition have signicantly extended current
knowledge and understanding of SARS-CoV-2 Mpro and inhib-
itor interactions and, thus offered valuable information toward
COVID-19 drug discovery.
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