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The reaction of diphenyltin dihydride with LiAlH, gives access to a
set of charged tin cages as their lithium salts. Variation in the ratio of
reactants provides a perstannabicyclooctane dianion and a perstan-
nanorbornane as the di- and monoanions. These compounds can be
synthesised selectively by careful stoichiometric control and have
been characterised by single crystal X-ray diffractometry, NMR and
UV-vis spectroscopy. Computational exploration of the electronic
structures of these compounds was undertaken and, in agreement
with structural and spectroscopic features, indicated significant
o-delocalisation in the tin skeletons.

The chemistry of anionic oligo-tin cage and cluster compounds
is dominated by a plethora of Zintl phases, discrete Zintl ions,"
[Sn,[*", or their derivatisation products, [R,,Sn,,[*".> Derivatisation
reactions of the Zintl ion Sny*~ have led to the trianionic
compounds RSny®>.* Reaction of thermolabile tin(1) halides
with [Si(SiMes);]” resulted in the isolation of neutral Sn,,[Si-
(SiMe3)s,* the monoanion Sny[Si(SiMe;);]s~,”> and the dianions
Sny[Si(SiMes);],>~ and Sny[Si(SiMes)s],> . Moreover, the anionic
cluster SngR,(NHC)~ (R = CH(SiMe;),, NHC = 1,2,34-tetra-
methylimidazol-2-ylidene) was isolated from the reaction of the
trihydride RSnH; with the corresponding NHC.? Alongside these,
several neutral metalloid clusters of the form Sn,R,, (n > m) have
been obtained from reductive or dehydrogenative coupling
methods.’ Closely related to metalloid compounds,'®” albeit
with a superstoichometric ratio of substituents to tin, are the
elementoid'® [1.1.1]pentastannapropellanes, SnsRg,'" tetra-
cyclic Sn,Rg'* and the hexastannabenzene isomer, SngRe."
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The aforementioned compounds share a non-classical, i.e. 3D-
delocalised, bonding situation. This confers a narrow energy gap
between frontier orbitals which facilitates interesting addition
chemistry and redox behaviour." In contrast to the well repre-
sented class of simple monocyclic rings, (R,Sn),'> purely
o-bonded tin cages, (RSn),, are sparse. Examples include tricyclo-
and pentacycloprismanes of the stoichiometry, RsSne and
R10Sn10,'® cubanes, RgSng,'” and a tetrahedral cage molecule
with edge-bridging methandiyl substituents.'® Anionic, covalent,
oligotin cages include SngRs>~ (R = Si-t-Buj)'® and Sns(CH;)Rs -
and the radical anion SnsRs~ (R = 2,6-Et,-C¢H;). The latter species
originate from the addition of methyl lithium to, and the electro-
chemical one-electron reduction of, a [1.1.1]pentastannapropella-
ne."”” Organotindihydrides are common starting materials in the
synthesis of oligotin compounds. Their dehydrogenative coupling
has also been widely applied in the synthesis of linear tin polymers
and cyclic oligomers (R,Sn),,,"® whilst the reaction of a tin dihydride
with sodium in liquid ammonia led to the formation of Ph,SnHNa
and NaPh,SnSnPh,Na.?®

Diphenyltin dihydride can be synthesised by the reaction of
LiAlH, with diphenyltin dichloride.>® During our repetition of
this literature method, we noted the reaction mixture would
often acquire a deep red or yellow colour upon the use of large
excesses of LiAlH,. This resulted in a significant decrease in yield of
the desired diphenyltin dihydride. Thus, in order to elucidate the
nature of possible over-reaction products, analytically pure Ph,SnH,
was reacted with LiAlH,.*?

In an initial reaction, an equimolar mixture of the two
reagents in THF was observed to provide a persistent bubbling
and the formation of a dark red solution, as well as a flocculent
white precipitate, identified as AIH; by IR spectroscopy. Addition
of 12-crown-4 (hereafter, 12-Cr-4) and storage at —30 °C yielded a
small amount of an intensely yellow material that was thought to
be a single, crystalline product. X-ray diffraction analysis, how-
ever, indicated this material to be a disordered mixture of two
oligostannane dianions (1 and 2). In order to access analytically

This journal is © The Royal Society of Chemistry 2020
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pure samples of 1 and 2, the ratio of LiAlH, to Ph,SnH, was
optimised.

The reaction of 7 equivalents of diphenyltin dihydride with
two equivalent of LiAlH, in THF or DME gave access to crystal-
line, analytically pure [Phy,Sn,]* [Li(12-Cr-4),]",, 1, in moder-
ate yields after the addition of 12-Cr-4 and storage at —30 °C.
Similarly, [Ph;,Sng]* [Li(12-Cr-4),]",, 2, was obtained by applying
analogous conditions albeit with a 8:2 ratio of Ph,SnH, : LiAlH,.
These optimised conditions yielded material suitable for
X-ray crystallography as orange and red crystals, respectively.
Higher tin to alumane ratios of 8:1 and above yielded the
bicyclo[2.2.2]heptastanna-1-ide [Phy;Sng] [Li(12-Cr-4),]", 3. 3
was characterised by NMR and UV-vis spectroscopy as well as
X-ray crystallography.>® A Ph,SnH, : LiAlH, ratio of 1:0.75 and
1:2 led to the formation of elemental tin and compounds 4
and 5 which contain discrete [PhAIH;]™ and [Ph;AlH] ™ anions
and charge separated [Li-(12-Cr-4),]" or [Li:(DME)(12-Cr-4)]
counterions. The formation of 4 and 5 demonstrates net phenyl
group transfer from tin to aluminium which provides the
tertiary tin bridgeheads in 1-3 with less than the original two
phenyl groups per tin. NMR spectroscopic interrogation of the
reaction mixtures indicated the initial formation of benzene
and of the anion [HPh,Sn]~ (*'°Sn: —180.5 ppm, Yiy_110gy =
152 Hz),*® which undergoes subsequent dehydrogenative
coupling with excess Ph,SnH, to cause the intermediate
formation of various unidentified oligostannyl anions. Isotopic
labelling experiments showed the predominant formation of H,
in the reaction of Ph,SnH, with LiAlD,, while treatment of
Ph,SnD, with LiAlH, gave D, (see ESIT page S31).

1 and 2 constitute the first reports of a bicyclo[2.2.1]-
heptastannane-1,4-diide and bicyclo[2.2.2]octastannane-1,4-
diide, respectively, and both crystallise in the presence of 2
[Li-(12-Cr-4),]" counterions as charge separated structures. In
the solid state structure of the bicyclo[2.2.1]heptastannane-1,4-
diide 1 (Fig. 1) the anionic bridgeheads Sn1 and Sn7 are
separated by an intramolecular distance of 5.04 A. The angles

1:0.75
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around Sn1 and Sn7 sum to 265.8° (Snl) and 264.6° (Sn7),
suggesting high p-orbital contribution in bonding orbitals at
Sn1 and Sn7 and implying significant s-orbital character for the
lone pair at these anionic tin atoms.

The bicyclo[2.2.2]octastanna-1,4-diide 2 (Fig. 1), features a
less constrained geometry in the solid state with angles around
the bridgehead atoms Snl and Sn8 just above 90° (sum of
angles around Sn1 = 276.05° and Sn8 = 274.08°). The mono-
anion 3 displays two distinctly different environments for the
bridgehead tin atoms with a highly pyramidalised anionic tin
atom Snl (sum of angles 287.69°) and a more tetrahedral
geometry at the phenyl substituted, formally neutral bridge-
head Sn4 (sum of Sn-Sn-Sn angles 318.62°). The bridgehead
atoms, Sn1 and Sn4, are separated by 5.27 A in 3, which is ca.
0.67 A less than in 2. In contrast to 1, compounds 2 and 3 are both
twisted in the solid state (see ESIT Fig. S2.2, page S-7 and S2.3, page
S-8). Compounds 4 and 5 (Fig. 1) containing discrete [PhAIH;]™
and [Ph;AIH]™ anions and charge separated [Li-(12-Cr-4),]"
or [Li-(DME)(12-Cr-4)]" counterions, respectively, display tetra-
hedral aluminium atoms with Al-C distances slightly greater
than 2.0 A.

The "°Sn{'H} NMR spectra of 1, 2 and 3 indicate that these
cages persist in solution, as evidenced by chemical shifts and
the observed *'?Sn/*'”Sn couplings (Fig. 2, ESI{ Section 4 pages
S-14-S-26). 1 displays three resonances at 200.3 (Ph,Sn),
35.7 (Ph,SnSnPh,) and —857.3 (Sn™~) ppm for which the coupling
pattern is in full agreement with the bicyclo[2.2.1]heptastanna—
1,3-diide framework in solution. ‘Jisg,_1191175, coupling constants
originating from the anionic bridgehead atoms are large with
values of 4640/4430 Hz for the interaction with the monotin-
bridge. In the case of coupling between the bridgehead tin atoms
and the ditin bridges, values of 5990/5710 Hz for the Ji15gy 119117,
coupling and 1130/1080 Hz for the *fiog, 1101175, coupling are
observed. The relatively large 'J values compare to a smaller
1091175 coupling constant of 3940 Hz for chemically equiva-
lent tin atoms within the same ditin bridge.

[Ph,AIH][Li(12cr4)(DME)] 5

i Al sn6 7
A2 4
o /“" ;

%
[Sn,Ph,JiLi(12cr4),] 1

3.5:1

Ph,SnH, : LiAIH,

[Sn,Ph, JlLi(12¢cr4),], 2

l41

[Sn,Ph J[Li(12crd),) 3 i

Fig. 1 Formation of anionic oligotin cages 1-3 and phenyl aluminium hydrides 4 and 5. Metal atoms are drawn at 30% probability level, only hydrogen
atoms attached to Al are shown, all other H atoms are omitted for clarity. For full geometric parameters, see ESIf pages S-7-S-9. Selected bond angles (°)
1: Sn2-Sn1-Sn5 94.37(2); Sn2-Sn1-Sn6 86.75(1); SN5-Sn1-Sn6 84.67(1); Sn3-Sn7-Sn4 93.52(2); Sn3-Sn7-Sn6 85.41(1); Sn4-Sn7-Sn6 85.69(1). 2:
Sn2-Sn1-Sn3 91.29(2); Sn2-Sn1-Sn4 91.41(2); Sn3-Sn1-Sn4 93.35(2); Sn5-Sn8-Sn6 90.95(2); SN5-Sn8-Sn7 89.00(2); SNn6-Sn8-Sn7 94.13(2). 3: Sn2—
Sn1-Sn6 96.92(8); Sn2-Sn1-Sn7 95.47(8); Sn6-Sn1-Sn7 95.30(8); Sn3—-Sn4-Sn5 106.93(8); Sn3-Sn4-Sn8 105.22(8); SN5-Sn4-Sn8 106.47(8).
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Fig. 2 °Sn{*H} NMR spectrum of 1 in ds-acetonitrile showing Sn—Sn couplings indicative of the solution integrity of these compounds.

ng to its higher molecular symmetry, only two resonances are
observed in the "°Sn{"H} NMR spectrum of 2, with peaks at
—316.8 (Ph,SnSnPh,) and —585.0 (Sn~) ppm. The 'J and the
%Ji1ogn 11917, coupling constants between the bridgehead tin
atoms and the Ph,SnSnPh, bridges are 5020/4800 Hz and
807/770 Hz, respectively. Again, a smaller “Jiisg, 1175, coupling
constant of 3610 Hz is observed for neighbouring diphenyltin
fragments. The monoanion 3 displays four distinct signals in
the '"Sn{"H} NMR spectrum at —183.1 (Ph,SnSn"), —238.6
(PhySnSnPh), —470.8 (SnPh) and —757.9 (Sn~) ppm. Notably,
the coupling constant of the tricoordinate, anionic tin atom in 3
is larger (Jisgn_1omi7gy = 6410/6090 Hz) in comparison to the
signal of the neutral tin bridgehead, which is only 1150/1090 Hz.

Experimentally observed NMR chemical shifts were replicated
by DFT calculations. To support the bonding model proposed
based on the structural analysis of 1-3, the anions in these
compounds were interrogated by DFT calculations employing
different methods and basis sets. (For computational details and
references see ESIT page S-84). The highest occupied molecular
orbitals of 1-3 are shown in Fig. 3. These orbitals are in each case
associated with the lone pairs on the anionic bridgehead tin
atom(s) with contribution of the tin skeleton and show sig-
nificant s-character.

This supports the conclusion of significant p-orbital involve-
ment in the Sn-Sn bonding of the bridgehead tin atoms
inferred from their experimental solid state structures. The
frontier orbitals of 1-3 (Fig. 3 and ESIT pages S-37-5-40) display
distinct groupings into sets of orbitals with o-, o*- and
n*-character interpreted as the onset of band-like behaviour.
The HOMO to HOMO—-8 (AEgomo-nomo—s = 1.78 eV) for 2 and
HOMO to HOMO-7 orbitals for 1 (AEgomo-nomo—_7 = 2.03 €V)
and 3 (AEuomo-nomo_7 = 1.66 eV) essentially represent the

Fig. 3 Highest occupied molecular orbitals of 1-3, for full computational
details see ESIt Section 5, pages S-34-S-83.

338 | Chem. Commun., 2020, 56, 336—-339

c-bonded tin cores with only minor orbital contributions from
the phenyl substituents. Within HOMO-LUMO energy gaps of
only 2.33 eV (1), 2.15 eV (2) and 2.47 eV (3), the character of the
frontier orbitals changes to phenyl based n* character.

The LUMO to LUMO+n orbitals (n=20in1,n=23in2,n=25
in 3) are similar in orbital energy and all localised on the phenyl
substituents. This manifold of ©* orbitals is then followed by a
set of orbitals with predominant o* character of the tin frame-
work, which span energy ranges of 0.78 eV (1), 0.81 eV (2) and
1.34 eV (3). These closely spaced MOs are reflected in the
electronic absorptions displayed by 1-3. The UV-visible spectra
of these species do not display distinct absorption maxima and
are instead broad and tailing, suggestive of weak but extensive
absorptions. Nevertheless, the visibly observed colours for
crystals of 1 (orange-yellow), 2 (orange-red) and 3 (bright yellow)
are consistent with the expected effects of cage size and charge
upon c-delocalisation®® inferred from the DFT calculations.

In summary, the reaction of Ph,SnH, with LiAlH, provides
facile access to the charge-separated species, 1, 2 and 3, com-
prising an unprecedented set of structural motifs in anionic
oligostannane cages. 1 and 2 constitute new dianionic covalent
tin cages and we propose that they will provide convenient
synthons in further transformations because of their charged
nature and solution integrity. The electronic structure of 1-3
was interrogated computationally and support the presence of
o-delocalisation.
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