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of ab initio molecular dynamics simulations and
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Molecular dynamics simulations are often key to the understanding of the mechanism, rate and yield of

chemical reactions. One current challenge is the in-depth analysis of the large amount of data produced

by the simulations, in order to produce valuable insight and general trends. In the present study, we

propose to employ recent machine learning analysis tools to extract relevant information from

simulation data without a priori knowledge on chemical reactions. This is demonstrated by training

machine learning models to predict directly a specific outcome quantity of ab initio molecular dynamics

simulations – the timescale of the decomposition of 1,2-dioxetane. The machine learning models

accurately reproduce the dissociation time of the compound. Keeping the aim of gaining physical

insight, it is demonstrated that, in order to make accurate predictions, the models evidence empirical

rules that are, today, part of the common chemical knowledge. This opens the way for conceptual

breakthroughs in chemistry where machine analysis would provide a source of inspiration to humans.
1 Introduction

Computer simulations are a key complement to experiments in
the laboratory, especially when the latter are expensive or
challenging because of extreme conditions required. Simula-
tions also provide much greater details of a molecular process
than can be observed experimentally. For instance, studying the
time evolution of matter with molecular dynamics simulations
is essential for understanding the mechanism, rate and yield of
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chemical reactions. Such simulations are also necessary to
complement experiments and connect with time-resolved
pump-probe measurements. At each time step of an ab initio
molecular dynamics simulation, the energies and forces felt by
the nuclei are calculated “on-the-y” with an electronic struc-
ture method. With the growing complexity of the investigated
chemical problems and the increasing need for improved
accuracy, molecular dynamics simulations become very time-
consuming. Typical time and length scales that are accessible
with ab initio molecular dynamics are, with current computer
systems, up to hundreds of femtoseconds (fs) to tens of pico-
seconds, and tens to few hundreds of atoms. As simulations
become more complex, their usefulness for guidance and
understanding may become obscured. Simple lessons are oen
lost among gigabytes or terabytes of data. The present work
proposes to use machine learning methods to aid the inter-
pretation of molecular dynamics simulations. The bigger goal
here is in the future to allow machines to provide a source of
inspiration to humans for the elaboration of new concepts in
chemistry. This has been identied by some of us as one of the
six grand challenges for the simulation of matter in the 21st
century1 and the present work demonstrates an approach for
achieving this.

As a test application, the timescale of the chemiluminescent
decomposition of 1,2-dioxetane is chosen (Fig. 1A). Chem-
iluminescence is the emission of light as a result of a chemical
reaction. This process is called bioluminescence when occurring
in living organisms as in the well-known example of the rey. For
a recent review on the topic, see ref. 2 and 3. Chemiluminescence
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 1,2-Dioxetane molecule. (A) Dark and chemiluminescent
dissociation reactions. (B) Schematic representation of the relevant
normal modes. Normal mode 1 corresponds mainly to the OCCO
dihedral angle while normal mode 7 corresponds mainly to the HCCH
dihedral angles.
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and bioluminescence are increasingly used in biological and
chemical analysis methods,4 in various elds such as DNA
sequencing,5 immunoassays as an alternative to radioactive
isotopes6 and as a sensitive probe for mechanical stimulations.7,8

The applications are of course limited by the light emission effi-
ciency, i.e. the chemiluminescence yield. 1,2-dioxetane is known
to be the smallest compound with chemiluminescent properties.
Upon thermal activation, it decomposes into two formaldehyde
molecules in a two-step process: rst the O–O bond breaks
(Fig. 1A, step 1) and then the C–C bond (Fig. 1A, step 2).9,10 Non-
adiabatic transitions from the electronic ground state to elec-
tronic excited states during the decomposition reaction lead to
chemiexcitation. The resulting electronic excited states can relax
back to the electronic ground state by emitting light. Previous ab
initio molecular dynamics simulations have been performed for
several methyl-substituted dioxetane molecules.11,12 Those simu-
lations have shown that the chemiexcitation yield is determined
by the dissociation timescale: the longer the molecule stays in the
so-called “entropic trap” region before dissociating, the higher the
chemiexcitation yield. Being able to calculate and understand the
dissociation time of dioxetanes is thus essential for rationalising
chemiluminescence yields measured experimentally and for
designing new and efficient chemiluminescent compounds. It is,
however, a priori unclear which molecular modications would
eventually result in signicant changes of the dissociation time.
Testing possible hypotheses with ab initiomethods is an arduous
process due to the computational demand required by the
methods and can easily exceed available computing resources.

In the present work we illustrate how machine learning
models can be used to solve this task. More specically, we
employ Bayesian neural networks (BNN) which are trained to
predict the dissociation times of 1,2-dioxetane from initial
This journal is © The Royal Society of Chemistry 2019
nuclear positions (or from initial nuclear positions and veloci-
ties). We demonstrate that the trained BNN can be used in two
different ways: (i) to autonomously nd physical correlations,
and (ii) to test already formulated hypotheses. This is performed
on both the unmethylated and tetramethylated dioxetanes, the
latter presenting a longer dissociation timescale and thus
a higher chemiexcitation yield than the former. High prediction
accuracy for the dissociation time is achieved despite the
limited size of the dataset, which consists of 250 trajectories
simulating up to 250 fs with a time step of 0.24 fs. This presents
an advancement over prior studies with datasets with orders of
magnitude more data points.13,14 More importantly, we provide
an example for how to interpret the machine learning model
itself and the changes it has undergone during the training
procedure in order to learn how to reproduce the targeted
outcome. In addition, the trained BNN is used to predict
dissociation times of vibrationally excited states of the unsub-
stituted 1,2-dioxetane. Detailed understanding of the effect of
specic nuclear distortions, that could be either enhanced or
diminished via chemical modication, opens up possibilities
for more efficient molecular design. Still aiming at gaining
physical insight, it is demonstrated that while being trained to
reproduce the dissociation times of 1,2-dioxetanes with high
accuracy, the BNN has evidenced some chemical rules that
connect the nuclear positions (and velocities) and the dissoci-
ation times.

It is noted that to reduce the computational cost of molec-
ular dynamics simulations, a lot of efforts have recently been
devoted to construct efficient models that “learn” or t the
potential energy surfaces many orders of magnitude faster than
electronic structure calculations.13,15–22 For example, machine
learning techniques have been used to reproduce energies at
the level of hybrid density-functional theory, from lower-level
calculations and so-called molecular descriptors23,24 or directly
from just the Cartesian coordinates and the nuclear
charges.25–27 The present work goes to a higher level of
abstraction and proposes to use a machine learning model to
directly predict a specic outcome of the molecular dynamics
simulation, bypassing the construction of potential energy
surfaces and avoiding the computation of the time propagation.
The focus here is however neither on reducing the computa-
tional cost of electronic structure in ab initio molecular
dynamics simulations, nor on describing with quantitative
accuracy chemiluminescent or bioluminescent reactions. It is
rather on training a machine learning model on already simu-
lated trajectories (of a given chemical reaction and at a given
level of theory), and interpreting and using the trained machine
learningmodel in order to gain physical insight into the studied
chemical reaction. We describe two possible approaches to gain
insights: studying the trained models themselves to nd
correlations, and using the models to test already formulated
hypotheses. We note further that these approaches do not
depend on the way the potential energy surfaces are generated
along the dynamics trajectories. Our strategy could be used as
well to interpret dynamics simulations based on machine-
learned potential energy surfaces. In fact, the use of machine
learning to reduce the cost of ab initio molecular dynamics
Chem. Sci., 2019, 10, 2298–2307 | 2299
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Fig. 2 Illustration of a Bayesian Neural Network (BNN). (A): A Bayesian
neuron defines a mathematical operation based on an activation
function fact, a distribution of weights w and a distribution of biases
b intrinsic to the neuron. Every input x is processed by sampling one
instance of weights and biases from the distributions and applying the
activation function. (B) A BNN consists of a set of interconnected
Bayesian neurons. The neurons in the network are organised in layers,
and can differ in their activation functions as well as their weight and
bias distributions.
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simulations is expected to increase the amount of data gener-
ated and to be interpreted, which will further increase the need
for the tools proposed in the present work.

2 Methods
2.1 Ab initio molecular dynamics simulations

The approach used for the ab initio molecular dynamics simu-
lations is the same as in previously published works.11,12 The
complete active space self-consistent eld (CASSCF) method28,29

state-averaging over the four lowest-energy singlet states equally
is used to describe the electronic structure of the system. The
active space chosen consists of 12 electrons and 10 orbitals: the
four s and four s* orbitals of the four-membered ring, plus the
two oxygen lone-pair orbitals perpendicular to the ring. The
ANO-RCC basis set with polarized triple-zeta contraction is
used.30,31 Born–Oppenheimer dynamics is simulated with a time
step of 10 au (z0.24 fs) and all nuclear coordinates are taken
into account. It is noted that, in the present simulations, only
the electronic ground state is included and non-adiabatic
transitions to electronic excited states are not allowed. The
implementation of this method in the OpenMolcas package is
used.32,33 The trajectories are initialized and propagated from
the transition state for the O–O bond breaking – since the latter
controls the overall reaction rate. A small amount of kinetic
energy (1 kcal mol�1) is given along the reaction coordinate (as
suggested in previous theoretical studies of post-transition state
dynamics34) toward the biradical region where the O–O bond is
broken. The Newton-X package35 was used to sample 250 initial
positions and velocities along all normal modes (other than the
reaction coordinate) from a Wigner distribution in order to
reproduce the vibrational ground state. The normal modes were
calculated at the transition state structure using the electronic
structure method mentioned above. Dissociation is considered
to occur when the C–C bond length exceeds 2.4 Å (two times the
van der Waals radius of a carbon atom). It is noted that
choosing a slightly smaller or larger value for the bond length
dissociation threshold has been shown not to change any
relative comparisons, nor the ndings regarding the entropic
trap and the effect of the singlet excited states.11

2.2 Machine learning predictions

Two probabilistic models were used in order to estimate
dissociation times of the dioxetane molecule: these are imple-
mented as feedforward fully connected BNN. Neural networks
are constructed as a set of nodes, called ‘neurons’, with
connections between them (Fig. 2). Traditionally, each neuron
is characterised by a weight w, a bias b and an activation
function fact. For a given input x, a single neuron performs the
operation

y ¼ fact(w$x + b), (1)

where y denotes the output of the neuron. The architecture of
a neural network is dened by a set of parameters, collectively
referred to as ‘hyperparameters’, which dene for instance the
number of neuron layers, the number of neurons per layer and
2300 | Chem. Sci., 2019, 10, 2298–2307
the activation function of the neurons. In the case of a BNN,
both weights w and biases b are modelled as random variables,
sampled from a probability distribution, with conditional
dependencies on either other model parameters or the input
parameters, called ‘input features’ (Fig. 2A). As a consequence,
a BNN produces an output distribution (Fig. 2B). The BNN can
be trained so that the output distribution resembles a desired
target distribution by adapting the distributions of weights and
biases for each individual neuron. As such, BNN propagate
information based on entire parameter distributions as
opposed to traditional neural networks, which compute a target
value based on single-value parameters. BNN therefore retain
the exibility of traditional neural networks, but provide a more
robust framework for identifying relevant correlations between
inputs and outputs, especially for small and medium sized
datasets.36

The two models constructed in the present work use
different sets of input features. The rst model, hereaer noted
‘BNN1’, uses only the initial nuclear geometry of the molecule.
This journal is © The Royal Society of Chemistry 2019
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The second model, hereaer noted ‘BNN2’, also uses the initial
nuclear velocities in addition to the geometry. The nuclear
geometry and velocities are given in normal mode coordinates
to account for translational and rotational invariances. The
normal modes used are the ones calculated at the transition
state structure as indicated above. For the unmethylated diox-
etane molecule consisting of 8 atoms, BNN1 has therefore 18
input features while BNN2 has 36 input features. For the tet-
ramethylated dioxetane molecule consisting of 20 atoms, BNN1
and BNN2 have thus 54 and 108 input features, respectively.

Datasets for the BNN models were extracted from the ab
initio molecular dynamics simulations by sampling every h
frame (up to dissociation) along each of the 250 trajectories,
resulting in a total of 11 650 frames and the corresponding
dissociation times. We split the total set of data into a training
set (80%, 9320 frames), a validation set (10%, 1165 frames) and
a test set (10%, 1165 frames). Data for the test set were selected
as random samples from the entire set and were not used for
any part of the training procedure other than for reporting the
out-of-sample prediction accuracy aer all BNN models have
been trained. An informative and diverse training set was
assembled from the remaining 90% of the dataset via principal
component analysis (PCA).37 (The reader is referred to ESI† for
a brief introduction to PCA.) We selected the frames for the
training set which are maximally separated in the reduced PCA
space spanned by the most contributing principal components.
This protocol has shown to improve prediction accuracies in the
context of excitation transfer property predictions.18 The
frames, which were not selected with this protocol, were used as
the validation set.

The BNN used for the present study were implemented in the
probabilistic programming library edward,38 and model param-
eters were updated via variational inference using the Adam
optimisation algorithm.39 We parametrised the distributions of
weights and biases as Laplace distributions. This choice is made
in order to construct interpretable models. While the training set
is used to optimise the model parameters w and b of a BNN
model of a given architecture, the validation set serves as
a benchmark to determine the best performing BNN architec-
ture. For both BNN1 and BNN2, we conducted extensive hyper-
parameter searches to determine the best performing BNN
models. The most accurate BNN model was selected as the
model with the lowest prediction error on the validation set. We
computed an upper bound on the overtting error for both most
accurate constructed models, BNN1 and BNN2, based on the
Rademacher complexity40 for k-layered networks:41 it is 2.20 fs for
BNN1 and 2.38 fs for BNN2. Details on the implementation of
the BNN models and on the hyperparameter optimisation
including the scanned hyperparameter and obtained perfor-
mances of different BNN architectures, are reported in the ESI.†
It is noted here that hyperparameters of BNN1 and BNN2 were
found to be similar, despite the different number of input
features. It is important to remember that the BNN are trained to
learn the dissociation time of 1,2-dioxetane or tetramethyl-1,2-
dioxetane from a particular set of initial conditions (nuclear
positions, and velocities for BNN2) without a priori knowledge
about the dynamics of the chemical reaction of interest.
This journal is © The Royal Society of Chemistry 2019
3 Results

In this section, the machine learning predictions are used to
study the mechanism of the dissociative reaction of 1,2-dioxe-
tane. The BNN trained for the unmethylated dioxetanemolecule
is analysed in detail and unless explicitly stated otherwise, the
results are presented for this compound. We begin our analysis
with validating that the trained BNN are indeed capable of
predicting dissociation times within reasonable accuracy. Then,
we proceed with analysing the architecture of the trained BNN
to identify nuclear coordinates relevant to the dissociation
timescale. Finally, we use the BNN to test hypotheses about
physical correlations.
3.1 Validation of the dissociation time predictions

First we present, for the test set, the comparison of the C–C
dissociation times obtained from the ab initio molecular
dynamics simulations with the dissociation times predicted by
the best performing BNN1 and BNN2models in Fig. 3. Standard
deviations of the predicted dissociation time distributions were
used to indicate the uncertainty of the BNN model with respect
to the predicted dissociation time. We nd that BNN can predict
dissociation times with high accuracy, despite the medium-
sized dataset used for training (10 000 data points from only
250 trajectories). A detailed analysis of the sampling efficiency,
i.e. the achieved performance with respect to different training
set sizes is reported in the ESI.† The prediction accuracy is
improved when supplementing the molecular geometry with
the velocities of the atoms (Fig. 3B): the mean absolute devia-
tion (MAD) is 2.40 fs for BNN2 while it is 6.55 fs for BNN1. This
observation, combined with the observation that prediction
accuracies on the validation set are similar for BNN1 or BNN2
(see ESI†) indicates that supplementing geometries with veloc-
ities improves the generalisation abilities of the BNNmodels. In
addition, the BNN models generally predict dissociation times
with higher uncertainties when the deviation between the pre-
dicted and the true dissociation time is larger. We note that the
prediction accuracy can likely be improved when supplement-
ing the presented model training procedure with strategies like
cross-fold validation for an effective increase of the training set
size as proposed in other studies,42,43 or testing different models
such as kernel-based methods.24,44,45 However, in this study we
aim to focus on the interpretability of the trained models and r2

¼ 0.97 for BNN2 is considered to be sufficient for this purpose.
Once trained, machine learning models can be extensively

used to predict the targeted values with high accuracy and low
computational cost. As a reference, it takes on one processor
less than a minute to generate a set of 250 initial conditions,35

a few seconds to predict the corresponding 250 dissociation
times with the trained BNN and approximately 31.5 hours to
simulate 160 fs of a single ab initio molecular dynamics simu-
lation (for the unmethylated dioxetane, at the level of theory
used). Here, in addition, we consider the trained BNN as a result
by itself and analyse it to see if physical insight can be gained. In
particular, we are interested in understanding the following
points: How does the BNN reproduce the C–C dissociation
Chem. Sci., 2019, 10, 2298–2307 | 2301
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Fig. 3 Out-of-sample predictions for best performing (A) BNN1 and
(B) BNN2 models. For all frames in the test set (1165 frames) we depict
the dissociation times predicted by the BNN models in comparison to
the true dissociation times. Root mean square deviations (RMSD),
mean absolute deviations (MAD) and coefficients of determination (r2)
are reported. Depicted points are coloured based on the predicted
uncertainty of the BNN model. The grey dashed line indicates perfect
agreement between predicted and true dissociation times.
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timescales with such a good agreement? What correlations has
the BNN identied to achieve high accuracies?
3.2 Analysis of the trained models to nd correlations

The Laplace distribution (used here as priors for the weights
and biases) has been shown to facilitate efficient pruning in
BNN parameters,46 and is the equivalent to L1-regularization in
the Bayesian context.47 As such, this choice is well suited to
enable the BNN to identify the input features which are most
relevant for accurate predictions of the target properties.
Generally, the larger the magnitude of the coefficient, the more
inuential the feature. This relation can be used to determine
input features which are relevant for accurate predictions of the
dissociation time and therefore relevant to the physical process.
2302 | Chem. Sci., 2019, 10, 2298–2307
Fig. 4 shows the coefficient magnitude distributions of the
input features for the Bayesian neural networks BNN1 and
BNN2. The numbering of the normal modes goes from 0 to 17,
0 being the reaction coordinate; {ri} correspond to geometry
coordinates along these normal modes while {vi} correspond to
velocities. As just explained, an input feature that has a large
coefficient magnitude does not imply that a distortion along
this nuclear coordinate would lead to a longer dissociation time
but rather, it indicates that this nuclear coordinate is relevant to
predict accurately the dissociation time. It is noted that the
choice of input features affects thus not only the learning ability
of the BNN, but also the physical interpretation of the correla-
tions that are identied. Trying other input features than the
nuclear geometry and velocities in normal mode coordinates is
beyond the scope of the present work, but it would be an
interesting task to pursue.

Out of the 18 normal modes, BNN1 identies four as more
important for the decomposition reaction: normal modes 6, 7, 8
and 11. They are represented schematically in Fig. 1B. Normal
mode 6 corresponds to the (symmetric) stretching of the two
C–O bonds, associated with the stretching of the central C–C
bond in an out-of-phase manner. Normal mode 7 corresponds
to the HCCH dihedral angles. Normal modes 8 and 11 corre-
spond to the stretching of the central C–C bond in phase with
symmetric out-of-plane motions of the two OCH2 moieties. In
BNN2, the coefficients of the initial nuclear geometry (input
features r0 to r17) are larger in magnitude, in general, than the
ones of the initial velocities (input features v0 to v17). As in
BNN1, the input features r6, r7, r8 and r11 are identied to be
important. In addition, r1 is also identied to be important.
Normal mode 1 corresponds to the OCCO dihedral angle
(Fig. 1B). Among the remaining 18 input features corresponding
to the initial velocities, the features v1 and v8 have the largest
coefficient magnitudes. Normal modes 1 and 8 are already
identied as important according to the coefficients of the
initial position features.
3.3 Use of the trained models to test hypothesis

It is noted that the previous analysis, applied on the trained
BNN able to make accurate predictions, allows the identica-
tion of the most relevant nuclear coordinates for the dissocia-
tion dynamics. However, it is not known how these affect the
dynamics, i.e. whether they make the dissociation occur earlier
or later. As an alternative way to gain physical insight, the two
trained BNN have been used to predict the dissociation time-
scales for 17 ensembles of 250 initial conditions, each ensemble
representing a vibrational state that is excited to the rst level
along one particular normal mode. For example, the ensemble
“3” corresponds to a vibrational state that is excited along
normal mode 3, while it remains in the ground state along all
other modes. The ensemble “0” is a reference vibrational
ground state along all normal modes, different from the 250
ground state trajectories used for training the BNN. For each
ensemble of 250 initial conditions, the corresponding 250 pre-
dicted dissociation times are sorted to then extract the overall
dissociation half-time, time at which half of the trajectories
This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Coefficient magnitude distributions of the input features of the trained (A) BNN1 and (B) BNN2. Input features {ri} and {vi} correspond to
geometry coordinates and velocities along normal modes, respectively. The numbering of the normal modes goes from 0 to 17, 0 being the
reaction coordinate.
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have dissociated. The predicted dissociation half-times are
presented in Fig. 5A: they vary from 49 fs to 63 fs, the reference
being 60 fs. It is observed that accelerating the dissociation
upon vibrational excitation is more probable than slowing it
down, which makes sense since some kinetic energy is added.
Excitations of the normal modes 4, 6, 8 and 11 lead to an
acceleration of the dissociation while excitation along normal
mode 3 is predicted to slow down the dissociation. Normal
modes 6, 8 and 11 were already identied as important
according to their high coefficient magnitude. Normal mode 3
corresponds to the antisymmetric stretching of the two C–O
bonds; normal mode 4 corresponds to the central C–C bond
stretching (Fig. 1B). So, according to the trained BNN, in order
for the C–C bond to break earlier rather than later, the two
formaldehyde moieties need to become planar at the same time
as both C–O bonds need to shorten (i.e. excitation along normal
modes 6, 8 and 11), while if the two C–O bonds stretch in an
anti-symmetric fashion (i.e. excitation along normal mode 3),
this delays dissociation. On the other hand, the high frequency
modes (12 to 17) involving the hydrogen atoms seem to affect
only mildly the dissociation timescale.

It is interesting to note that, although normal mode 7 is
identied as important for predicting accurately the dissocia-
tion time (because of its large coefficient magnitude, Fig. 4),
vibrational excitation along only this mode seems to barely
affect the overall dissociation half-time compared to the refer-
ence one (Fig. 5A). To understand this fact, we have used the
trained BNN2 to predict the dissociation times for ensembles of
This journal is © The Royal Society of Chemistry 2019
initial conditions, where each ensemble now represents
a vibrational state that is excited to the rst level along two
particular normal modes in order to detect second-order effects.
The predicted dissociation half-times obtained for each pair of
normal modes are given in ESI,† as well as the normal mode z-
scores providing information about how excitation along
a nuclear coordinate inuences the dissociation half-time ob-
tained with an excitation along another coordinate. We nd that
combining any vibrationally excited normal mode with an
excitation along normal mode 7 slows down dissociation. We
thus conclude that a sole excitation along normal mode 7 is not
sufficient to inuence the dissociation timescale (maybe
because this mode mainly involves the motion of hydrogen
atoms). However, excitation of normal mode 7 in combination
with the excitation of another nuclear coordinate could impact
the dissociation time signicantly. This result would explain the
large coefficient magnitude of normal mode 7 in Fig. 4 and also
shows how the two proposed methods to gain physical insights
from the trained BNN are complementary.

3.4 Ab initio molecular dynamics simulations of vibrational
excited states as “numerical experiments”

To check the accuracy of the dissociation times predicted by the
BNN and presented in Fig. 5A, we have simulated the ab initio
molecular dynamics of four ensembles of 250 trajectories (in
addition to the reference ensemble “0”) with excitations along
normal modes 3, 4, 8 and 11. It is noted that the ab initio
molecular dynamics simulations are computationally
Chem. Sci., 2019, 10, 2298–2307 | 2303
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Fig. 5 Dissociation half-times for 17 ensembles of 250 initial condi-
tions representing different vibrationally excited states. Ensemble “0” is
the reference vibrational ground state. Otherwise, ensemble “n”
corresponds to a vibrational excitation along normal mode n, and
ground state along other normal modes. (A) Predicted dissociation
half-times by the two trained BNN. The solid and dashed horizontal
lines indicate the dissociation time for the ensemble “0”, predicted and
extracted from the simulations, respectively. (B) Comparison of the
dissociation half-times predicted by the BNN and obtained from ab
initio molecular dynamics simulations, for five ensembles of 250
trajectories. The error bars represent the 95% confidence intervals of
the predictions.

Table 1 Average number of frustrated dissociations per trajectory for
each ensemble of 250 trajectories

Ensemble 0 3 4 8 11
nfrus 1.68 1.52 1.18 1.08 1.17
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expensive; they are run here for test purposes, in particular for
checking the accuracy of the BNN predictions for initial vibra-
tional excited states not present in the training set.

The four normal modes 3, 4, 8 and 11 were chosen because
excitations along modes 8 and 11 are predicted to decrease the
most the dissociation half-time, while excitation along mode 3
is predicted to increase it. Normal mode 4 is also predicted to
decrease the dissociation half-time and can be seen as the
“naive” choice for enhancing C–C bond dissociation without
any chemical knowledge, since it corresponds to additional
energy along the C–C bond stretching solely. The comparison
between the dissociation half-times predicted by the BNN and
obtained from the ab initio molecular dynamics simulations is
presented in Fig. 5B. The qualitative trend is correctly predicted
by the BNN. Overall, the errors are on the same order of
magnitude as for the reference ensemble “0” although the
excited normal modes exhibit larger initial nuclear distortions
that may not be present in the training set. In general, BNN2
2304 | Chem. Sci., 2019, 10, 2298–2307
performs better than BNN1: the root-mean-square deviation is
about 1.6 times smaller for the former than for the latter. BNN1
seems to overestimate the dissociation time. An interesting
point is that the naive thought that exciting the C–C bond
stretching would enhance dissociation is partially validated. It
does indeed decrease the dissociation half-time compared to
the reference by almost 5 fs, i.e. about 8%. However, the BNN
successfully nd other nuclear modes which decrease the
dissociation time further (about 13%) thanks to its nding of
physical correlations.

In a previous theoretical study,11 the longer dissociation
times among the 1,2-dioxetane trajectories were explained by
the presence of so-called “frustrated” dissociations – signicant
stretching of the central C–C bond followed by a shortening
rather than a “successful” breaking of the bond. Frustrated
dissociations would postpone in time the nal successful
dissociation. To understand further the link between the
predicted/simulated dissociation times and the number of
frustrated dissociations, the average number of frustrated
dissociations per trajectory are calculated for each ensemble of
250 simulated trajectories (Table 1). As expected, the vibra-
tionally excited ensembles present fewer frustrated dissocia-
tions than the reference ground state since more kinetic energy
is available to overcome energy barriers. Interestingly, for the
four vibrational excited ensembles, the fewer frustrated disso-
ciations, the shorter the dissociation time. This is particularly
true for ensemble 8 that exhibits the largest decrease in the
average number of frustrated dissociations (35%) and the
largest decrease in the dissociation time (13%). The BNN have
thus identied nuclear coordinates that would affect the overall
dissociation time through the number of these frustrated
dissociations. It is noted, however, that ensemble “3” presents
a lower average number of frustrated dissociations than the
reference ensemble “0” despite its longer dissociation half-
time. This indicates that the number of frustrated dissocia-
tions is not the only parameter determining the dissociation
timescale, dissociations needing to be attempted in order to be
frustrated or successful.
4 Discussion

In this section, the trained models are discussed with rst
interpreting the identied correlations in the context of chem-
istry. Finally, implications for chemiexcitation and chemical
design are discussed, using the case of the tetramethylated
dioxetane molecule.
4.1 Interpretation of the ndings of the trained models

Interpreting the correlations identied by the BNN leads to the
following fundamental concepts known in chemistry: the octet
This journal is © The Royal Society of Chemistry 2019
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rule,48–50 the relation between bond order and bond length51,52

and orbital hybridisation.53,54 The octet rule states that atoms
(with an atomic number Z $ 5) tend to combine in such a way
that each atom has a full valence shell (i.e. with eight electrons).
This electronic conguration, identical to the one of noble
gases, is associated to a maximal stability. As a consequence,
the carbon atom that has only four electrons in its valence shell
will form four covalent bonds to acquire the four missing
electrons. As the C–C bond breaks, each carbon atom has to
form a new bond with one of the remaining neighbouring
atoms in order to keep eight electrons in the valence shell: it
achieves this by forming a double bond with the oxygen atom.
The number of bonding electrons between a pair of atoms and
thus the bond order determines then the length of a bond.
When the single bond between the C and O atoms becomes
a double bond, more electrons participate in forming the bond
and the bond becomes shorter (i.e. excitation along normal
mode 6). The molecular shape is also explained with orbital
hybridisation, i.e. the fact that 2s and 2p atomic orbitals mix, by
minimising the repulsion between the pairs of electrons. The
theory used to rationalise the molecular shape is known as
valence shell electron pair repulsion (VSEPR) model.55,56 When
each carbon atom is surrounded by four atoms (here before
dissociation, an oxygen atom, the other carbon atom and two
hydrogen atoms), the 2s and three 2p orbitals mix to form the
four covalent bonds which adopt a tetrahedral arrangement:
this is called sp3 hybridisation. It is noted that the tetrahedral
conformation of the carbon atoms is constrained in 1,2-dioxe-
tane by the four-membered ring structure. When the C–C bond
breaks and each carbon atoms becomes surrounded by only
three atoms, then the 2s orbital mixes only with two 2p orbitals
to form three sp2 hybridised orbitals; the remaining 2p orbital
stays intact and will form the p bond by parallel overlap. Min-
imisation of the repulsion energy is obtained by a trigonal
planar geometry. Upon C–C bond breaking, the two formalde-
hyde moieties become thus planar (i.e. excitation along normal
modes 8 and 11). In summary, the BNN has identied the
following correlation between nuclear coordinates and disso-
ciation time, without any knowledge of electronic structure: the
C–C bond breaking must be associated with the formation of
a shorter (since double) C–O bond and the planarity of the
formaldehyde moieties. This is chemistry!
4.2 Implications for chemiexcitation and chemical design

Because the dissociation timescale determines the
chemiexcitation yield,12 a machine learning model able to nd
nuclear coordinates that affect efficiently the dissociation
dynamics could be used in design of chemiluminescent
systems. Here, normal modes 3 and 8 are found to be the
nuclear coordinates that induce the largest deviations from the
reference ensemble 0 (Fig. 5B). The chemiexcitation yield is
actually low in 1,2-dioxetane (0.3%).57 A chemical substitution
that would enhance the simultaneous planarisation of the two
formaldehyde moieties together with the stretching of the
central C–C bond would make the dissociation occur earlier and
therefore decrease further the chemiexcitation yield. More
This journal is © The Royal Society of Chemistry 2019
importantly, a chemical substitution that would induce an
asymmetric stretching of the two C–O bonds would make the
dissociation occur later and therefore increase the chem-
iexcitation yield. According to the kinetic model developed in
a previous work,12 a postponing of the dissociation time of
(unmethylated) 1,2-dioxetane by 3.2 fs – as predicted by
ensemble 3 compared to the reference ensemble 0 – enhances
the chemiexcitation yield by more than a factor of six!

It was observed experimentally that the yield increases by two
orders of magnitude upon substitution of the four hydrogen
atoms by four methyl groups.57 Initially, it was suggested that
the greater number of nuclear coordinates in the methyl-
substituted compounds would increase the depth of the
“entropic trap” and thus the chemiexcitation yield.9 Recently,
the ab initio molecular dynamics of the methyl-substituted
dioxetane has been simulated12 although these simulations
are more than 20 times more computationally expensive than
the ones for the unmethylated compound. This later work
demonstrated instead that the increase in chemiexcitation yield
is due to a mass effect. When training a BNN based on an
ensemble of trajectories of the tetramethylated dioxetane, we
found that the nuclear coordinates presenting large coefficient
magnitudes are the stretching of the C–O bonds, the stretching
of the central C–C bond, a planarisation of the two ketone
moieties and the O–C–C–O dihedral angle. These coordinates
are the equivalent of the normal modes 1, 6, 8 and 11 in the
unsubstituted 1,2-dioxetane molecule, which were identied as
important for predicting the dissociation time of the unsub-
stituted dioxetane. This result conrms the similarity in the
dissociation dynamics of the unsubstituted and methyl-
substituted molecules and therefore that the importance of
the methyl groups for increasing the chemiexcitation yield is
not the additional nuclear coordinates, but the heavier mass. It
also shows how machine learning models help interpreting the
results of molecular dynamics simulations.

5 Conclusion

Bayesian neural networks have been optimised to predict
a specic outcome of an ab initio molecular dynamics simula-
tion: the dissociation time of the unmethylated and tetrame-
thylated 1,2-dioxetane molecules from just the initial nuclear
geometry (and velocities). This means replacing the ab initio
molecular dynamics simulation in total and not only the
calculation of the potential energy at every time step. Despite
the medium size of the dataset used for training, a high
prediction accuracy is obtained. More important than the
ability to predict a number, we have analysed the trained
Bayesian neural networks and demonstrated that machine
learning models can help extracting conceptual information
from the large amount of data produced by the simulations.
Indeed, in order to make accurate predictions, the Bayesian
neural networks have gured out that an earlier dissociation
must be associated with the planarisation of the two formal-
dehyde moieties and the symmetric shortening of the C–O
bonds. This is in connection with the octet rule, the relation
between bond order and bond length and orbital hybridisation,
Chem. Sci., 2019, 10, 2298–2307 | 2305
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rules that are part of today's common knowledge of chemists.
The present work is a step towards achieving one of the grand
challenges in the 21st century1 and opens thus the way for
breakthroughs in chemistry where humans, inspired by the
ndings of machines, would develop new concepts.
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