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Extremely large vibrational amplitude (z8700 a.u.) heavy Rydberg levels in the

H�H1S+
g state, located only 25 cm�1 below the ion-pair dissociation limit, are reported.

The calculations are done using a hybrid log derivative/multichannel quantum defect

approach that accounts for predissociation and is capable of dealing with any number

of long-range closed channels, and of providing positions and widths for the heavy

Rydberg resonances. In this case, resonance positions can be reproduced qualitatively

using a simple diabatic model (however, the resonance widths cannot). Absolute

quantum defects are derived for the vibrational series ranging from n ¼ 0 to n ¼ 2010.

The influence of the Coulomb potential and continuity of heavy Rydberg behavior

throughout the 1S+
g manifold of states is demonstrated.
1 Introduction

The electrostatic Coulomb potential between particles of opposite charge can
support extremely long-range states in atoms and molecules. For instance, in
a recent experiment, a Rb atom within a Bose–Einstein condensate was excited to
an electronic (Rb+e�) Rydberg state with amean radius of orbit close to 4 mm, thus
exceeding the short axis of the entire 65 000 atom condensate.1

The vibrational levels of ionically bound states in diatomic molecules are
known to form Rydberg series2,3 and such vibronic states are now sometimes
referred to as ‘heavy Rydberg’ states.4–8 Heavy Rydberg (HR) states are analogous
of electronic Rydberg states but with the Rydberg electron replaced by a negative
ion. Thus both the center of mass and the reduced mass of HR states differ
signicantly from those of electronic Rydberg states. However, in either case
a system bound by a Coulomb potential at long range will support an innite
number of bound levels and the vibrational levels of a HR state will form a Ryd-
berg series with well-dened effective quantum numbers n* and quantum
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defects. The vibrational quantum number n is a measure of the number of nodes
in a given vibrational state and simply replaces the radial quantum number
n normally associated with electronic Rydberg states;3 note that n is a node count
so n + 1 ¼ n.

HR states have attracted much recent interest and substantial progress has
been made in their identication. The ion-pair (IP) states of molecular hydrogen,
the hydrogen halides, diatomic halogens and several other molecules exhibit
extended vibrational progressions that have been shown to be HR in character
over much of their range.8–25 Heavy Rydberg behaviour is diagnostic of the
dominance of the Coulomb potential in a progression of vibrational levels. The
large electronic transition moments associated with valence 4 IP state transi-
tions (which must always be parallel), when combined with good Franck–Condon
factors, makes ion-pair states effective doorway states for photochemical reac-
tions involving charge transfer. In homonuclear HR states a large transition
dipole connects g/u pairs of HR states that correlate with the same ionic products
and this can lead to amplied spontaneous emission.

There is an intimate connection between ion-pair states and electronic Ryd-
berg states that lie in the same energy region. Their electronic congurations are
related by a one or two-electron transfer between molecular orbitals. Asaro and
Dalgarno pointed out in 1985 (ref. 2) that the vibrational states in LiF would
acquire Rydberg character with increasing excitation. The year before, Mies pio-
neered the idea that multichannel quantum defect theory (MQDT, see e.g. ref. 26)
could be applied to vibrational states in diatomics,27,28 and in 1988 published
a paper that explicitly discussed the Rydberg-like properties of rotational–vibra-
tional states in alkalihalides.3 Around the same time, Zewail and co-workers
published their wave packet experiments on NaI,29,30 which were almost imme-
diately followed up by time-dependent calculations.31,32 In the experiment,
a surprisingly strong dependence on the excitation energy was observed for the
lifetime of the wave packet. Chapman and Child eventually demonstrated that in
the energy domain, this could be understood in terms of a periodic interfero-
metric modulation of the widths of the states constituting the wave packets.33

Later, this modulation, which can span several orders of magnitude, was shown
to cause Fano q-parameter reversals in lineshapes,34,35 and more recently, was
proposed as the basis for the excitation of long-range ion-pair states in ultracold
Rb gas.36

The present article is inspired by the observation of photoexcited HR states
with high principal quantum number (n > 1000) by Ubachs et al.,4,5,7,8 predomi-
nantly in H2. Molecular hydrogen has attracted intense interest from both theo-
reticians and spectroscopists over many decades.8,9,11,12,14,15,19–21,24,25 The potential
energy curves for many of the electronic states of H2 below the ionisation energy
can now be calculated to high precision and there is close agreement between
experiment and theory for the rovibronic term-values of most of the isotopomers
which include mass-dependent non-adiabatic corrections.15 Mixing between HR
and electronic Rydberg states provides doorway states that give access to the HR
manifold. We present close-coupled channel calculations in H2, using a hybrid
log derivative/MQDT method19,20 in an energy range that corresponds to principal
quantum numbers n z 2000. These HR states are embedded in the ionization
and dissociation continua. We account for the non-adiabatic couplings to the
neutral states of H2, leading to dissociation into neutral atoms, and focus on the
176 | Faraday Discuss., 2018, 212, 175–190 This journal is © The Royal Society of Chemistry 2018
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high energy long-range states between the n ¼ 3 and the ion-pair dissociation
limit. This is the region employed for threshold ion-pair production spectroscopy
(TIPS) and zero ion kinetic energy (ZIKE) techniques, and is of interest to astro-
physicists, especially as it closely relates to the process of mutual neutralization,
H+ + H� / H(nl) + H(n0l0), recently discussed by Larson et al.37
2 Properties of Rydberg states

HR states are bound by the long-range ion-pair potential,38

E ionðRÞ ¼ DAþB� � 1

R
� aAþ þ aB�

2R4
; (1)

where R is the internuclear distance, DA+B� is the ion-pair dissociation energy, and
aA+ and aB� are the polarizabilities of the two ions respectively. Atomic units are
used throughout. The dominant term in Eion(R) is the Coulomb potential, 1/R,
which supports an innite number of bound states and whose properties
underpin the scaling laws shared by all Rydberg systems.39 The energies of bound
Rydberg states are given by the Rydberg formula,

En ¼ DAþB� � ½2hcRyN�ðMAB=meÞ
2ðn� mðEÞÞ2 ; (2)

where n is the principal quantum number and m(E) is the quantum defect. The
quantity in brackets, [2hcRyN], corresponds to one atomic unit of energy. RyN is
the Rydberg constant for an electron associated with an innite-mass positive
charge, and (MAB/me) is the mass scaling factor given by the ratio of the reduced
mass MAB of A+B� and the electron mass me. The quantum defect, m(E), gives the
shi in the position of each Rydberg energy level compared to the pure Coulomb
potential (see discussion below).

All scaling laws for Rydberg states originate from the properties of the
Coulomb potential and the Rydberg formula. Since the energy levels scale as n�2,
the level spacing scales as n�3 (with the same scaling implied for line widths and
conversely n3 for lifetimes). The size of the Rydberg states scales as the classical
outer turning point Rtp,

Rtpz
2n2

ðMAB=meÞ ; (3)

with the same n2 scaling of the dipole moment.
It is important to note the effect of the reduced mass MAB in eqn (2) and (3),

which is illustrated in Fig. 1. As a consequence of this mass scaling, heavy Ryd-
berg states which by denition have (MAB/me) [ 1 are more compact and have
a larger proportion of the wave function contained in the short-range interaction
region for a given n. The mass scaling also has an obvious inuence on the
distribution of energy levels, as illustrated for the H-atom and H+H� in Fig. 1. In
electronic Rydberg states, represented here by the H-atom, almost all energy levels
occupy a narrow band just below the ionization limit, while the HR states in H+H�

occupy a much wider energy band.
The quantum defect m(E) in eqn (2) can be related to the asymptotic phase shi

in the scattering of the two opposite-charge fragments,26 with non-zero quantum
defects m(E) s 0 indicative of shorter range interactions. Consider for instance
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 212, 175–190 | 177
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Fig. 1 (A) Schematic of Rydberg states in the H-atom (left) and in the H+H� heavy Rydberg
system (right) in which H� is assumed to be a point charge. (B) The effect of the increased
mass on Rydberg energy levels is demonstrated by the distribution of states according to the
Rydberg formula using the effective mass of the H-atom on the left withMAB ¼ me ¼ 1 and
n ¼ 2–20, and the H2 molecule on the right withMAB ¼ 918 and n ¼ 30–300. Note that for
the H2 molecule the states would be perturbed by short-range repulsive interactions, not
included in this schematic (see later). Energy levels are indicated by horizontal lines.
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the rst electronically excited state of molecular hydrogen, the H2(B
1S+

u) state,
which has an ionic conguration H+H� derived from the molecular orbital
conguration s1

gs
1
u for radial separations R < 10 a.u. where it crosses the atom-pair

asymptote H(1s) + H(2s) leading to dissociation. The potential below this crossing
is thus coulombic albeit modied by a small polarization term, until, on the inner
branch of the potential, nuclear repulsion and electron-pair repulsion begin to
dominate at short range. The resulting inner wall, present in all molecular ion-
pair potentials, restricts the available phase space for vibration and results in
large negative quantum defects.3 This is in contrast to the positive quantum
defects for electronic Rydberg series in which the Rydberg electron can penetrate
through inner valence shells to experience an increased effective nuclear charge
giving a positive quantum defect. The energy dependence of the quantum defect
generally decreases with increasing principal quantum number, as the Coulomb
waves become increasingly similar in the interaction region, although the onset of
this effect is slower in HR states due to mass scaling.19 As a general remark in the
context of H2, note that HR states can only appear in the singlet manifolds of
states, since the singlet H�(1s2) negative ion is the only stable form of the anion.
3 Theory
3.1 Overview

The HR states can be regarded as a long-range collision complex between two
opposite-charge fragments. The complex can decay by predissociation, radiative
decay, or ionisation. The following approach considers predissociation, with
radiative decay slow enough to be ignored in the rst approximation and the
coupling to ionisation having a comparatively small inuence on line positions,
as will be argued later. The problem is treated using a hybrid log derivate-MQDT
approach applied across the three distinct regions shown in Fig. 2. The inner
178 | Faraday Discuss., 2018, 212, 175–190 This journal is © The Royal Society of Chemistry 2018
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Fig. 2 The calculations proceed through three regions. The inner interaction region A (0 <
R < Rf) has strong non-adiabatic couplings and we solve the close-coupled equations
using the log derivative method. The intermediate region B (Rf < R < Rd) has no inter-
channel couplings, but some channels contain long-range potentials capable of sup-
porting large-amplitude resonances. These asymptotically closed channels are eliminated
by an MQDT procedure. Finally, region C (R > Rd) is the asymptotic region.
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region A is the interaction region, where the nonadiabatic interaction between the
colliding fragments must be accounted for (using numerical integration of the
close-coupled equations by the log derivative method, Section 3.2), the interme-
diate region B is the long-range region which supports heavy Rydberg resonances
in the closed ion-pair channel (treated using an MQDT approach for channel
elimination, Section 3.3). Finally, in the asymptotic region C, all interactions
between the collision fragments have ceased.

3.2 Interaction region

We consider rst the interaction region (region A: 0 < R < Rf in Fig. 2) corre-
sponding to the collision complex. The theory of nonadiabatic atom–atom colli-
sions is well-established (see e.g. ref. 37, 40 and 41). The dynamics are governed by
a set of close-coupled partial differential equations,�

� 1

2MAB

�
1

d2

dR2
� 1

JðJ þ 1Þ
R2

þ AðRÞ þ BðRÞ d

dR

�
þUðRÞ � 1E

�
~JðRÞ ¼ 0; (4)

where MAB is the reduced mass and U(R) contains the N0 clamped-nuclei elec-
tronic energy curves, E is the total energy, and A(R) and B(R) are the N0 � N0

nonadiabatic coupling matrices. The leading rst-derivative coupling terms can
be eliminated by a Cayley transform,�

1
d

dR
þ BðRÞ

�
CðRÞ ¼ 0; (5)

with boundary condition C(R / N) ¼ 1. The matrix C(R) denes the adiabatic–
diabatic transformation. This allows us to transform eqn (4) into the standard form,

J00(R) ¼ W(R)J(R), (6)

where J is a N0 � N0 matrix, with each column being a linearly independent
solution, J00 indicates the second derivative with respect to R, and the matrix W
consists of
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 212, 175–190 | 179
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WðRÞ ¼ 2MAB

ħ2
VðRÞ � k2; (7)

where the N0 � N0 matrix V contains the diagonal potentials (including the
angular momentum components) and the off-diagonal coupling elements. The
diagonal matrix k contains the asymptotic channel wave vectors k2 ¼ (2MAB/ħ

2)3,
where 3 has diagonal elements 3i ¼ E � Ei, with E being the total energy and Ei
being the threshold energy in each channel i.

Eqn (6) is solved using the log derivative method,42–44 which propagates the log
derivative matrix Y, dened as

Y(R) ¼ J0(R)J�1(R), (8)

where J0 indicates the rst derivative with respect to R. Propagation of Y elimi-
nates stability problems that can arise when the integration is started deep inside
a classically forbidden region, or if it enters regions where a subset of channels
are classically forbidden. Differentiation of eqn (8) and removal of the second
derivative using eqn (6) gives a non-linear rst order differential equation,

Y0(R) ¼ W(R) � Y2(R), (9)

known as the matrix Riccati equation. Since Y is undened when det|J| ¼ 0,
standard integration techniques are not applicable and a form of invariant
embeddingmust be used instead (see the extensive literature on the log derivative
method, e.g. ref. 42–44).

The matrix is propagated out to the matching radius Rf, at which point we
assume that the channel interactions have vanished. At that point, the matrix is
used to calculate the wave function in the form

J ¼ F � GK, (10)

where the wave functionJ is a N � Nmatrix with each column corresponding to
one solution, and F and G are diagonal N � N matrices containing energy-
normalized Milne functions.45 These coincide with the analytic Coulomb and
Riccati–Bessel functions once the polarization term in eqn (1) vanishes. The
crucial entity is the N � N reaction matrix K, which summarizes all interactions
for R < Rf, and which is independent of R, i.e. dK/dR¼ 0, in the absence of channel
interactions. Since channels closed already at Rf are excluded from J, note that
N # N0. The matrix K is obtained by

K ¼ G�1F + G�1B�1G�1U, (11)

where B ¼ Y � G0G�1, and only the N � N (open–open) parts of the matrices are
considered in eqn (11) (and eqn (10)), since the components associated with the
N0�N closed channels have vanished. For energy-normalized Milne wave func-
tions in natural units, the Wronskian matrix is given by Uij(R) ¼ p�1dij. The
calculations of the matrix K (or equivalently S) would normally constitute the end-
point of the calculation. However, in the presence of HR resonances, the long-
range ion-pair potential supports resonances in the external region B (Rf < R <
Rd), the treatment of which will be discussed in the next section.
180 | Faraday Discuss., 2018, 212, 175–190 This journal is © The Royal Society of Chemistry 2018
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3.3 Intermediate region

We consider here the situation where the intermediate region (region B: Rf < R <
Rd in Fig. 2) contains long-range potentials capable of supporting additional
vibrational resonances. Assume that among the N channels in the R > Rf wave
function in eqn (10), there exists a subset of Nc asymptotically closed channels, for
instance due to the ion-pair Coulomb potential, such that N ¼ No + Nc, where No

are the asymptotic channels that remain open for R > Rd. The Nc closed channels
can be eliminated using multichannel quantum defect theory (MQDT).26,46 For
energies close to the threshold, where the wave functions in the Coulomb chan-
nels extend to large distances, this procedure is more efficient than integrating all
N channels to asymptotic distances.

In essence, the elimination procedure uses the N linearly independent solu-
tions given by the column vectors ofJ in eqn (10) to form No superpositions with
correct asymptotic boundary conditions. This can be expressed as

F ¼ JZ, (12)

whereF is a N � No matrix,J a N � Nmatrix, and the coefficient matrix Z is N �
No. As before, each column is one solution.

Rewriting the matrix K as

K ¼ S C�1; (13)

where S and C are N � N matrices, and the coefficient matrix Z as

Z ¼ CB; (14)

allows us to express eqn (12) as

F ¼ ðF � GKÞZ ¼ ðFC � GS ÞB: (15)

The component of the wave function given by eqn (15) for channel i and
solution j is

Fij ¼ p�1=2aið3i;RÞ
XN
i0

�
sin Jið3i;RÞC ii0 þ cos Fið3i;RÞS ii0

�
Bi0 j ; (16)

where fi(3i,R/N) ¼ bi(3i) for closed channels, with bi(3i) the accumulated phase
R : Rf/N at energy 3i.‡ At large distances R/N the wave functionmust be zero
in closed channels, meaning that

XN
i0

�
sin biC ii0 þ cos biS ii0

�
Bi0 j ¼ 0; (17)

which in matrix form is

ðsin bC þ cos bS ÞB ¼ 0; (18)

with sin b and cos b diagonal N � Nmatrices with elements (sin b)ii ¼ sin b(3i).
For asymptotically open channels, eqn (16) has fi(3i,R / N) ¼ kiR + di,

assuming the asymptotic potential is constant. We can rewrite the sum as
‡ Calculated numerically by inwards integration, see Jungen and Texier.45
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sin fi

�XN
i0

C ii0Bi0 j

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ti cos ps

þ cos fi

�XN
i0

S ii0Bi0 j

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ti sin ps

¼ Ti sinðfi þ psÞ: (19)

To obtain a condition similar in form to the closed channel condition in
eqn (17), while ensuring that each open channel has the same asymptotic phase
shi ps, we can dene

0 ¼ �Ti cos ps sin psþ Ti sin ps cos ps

¼
XN
i0

h
C ii0 sinð�psÞ þ S ii0 cosð�psÞ

i
Bi0 j ;

(20)

which in matrix form becomes	
sinð�psÞC þ cosð�psÞS 
B ¼ 0: (21)

The unknowns in eqn (18) and (21) are the N � No coefficient matrix B and the
No eigenphases s. A numerically convenient method to obtain all these in a single
calculation is to combine eqn (18) and (21) in the form of a generalized eigenvalue
equation,

GB ¼ tan psLB, (22)

where the N � N matrices G and L are dened as

Gii0 ¼ sin biC ii0 þ cos biS ii0 ; i˛closed
Gii0 ¼ S ii0 ; i˛open
Lii0 ¼ 0; i˛closed
Lii0 ¼ C ii0 ; i˛open:

(23)

The main remaining steps are to normalize the continuum eigenvectors in B
and to calculate the scattering matrix S. According to the denitions of T in eqn
(19), we have that

Tij ¼ Tij cos
2ðpsrÞ þ Tij sin

2ðpsrÞ

¼
XN
i0

h
cosðpsrÞC ii0 þ sinðpsrÞS ii0

i
Bi0 j ;

(24)

or in matrix form,

T ¼ 	cos�psr�C þ sin
�
psr
�
S


B: (25)

The matrix T can be shown to be orthogonal46 and becomes unitary, TT† ¼ 1, if

it is normalised according to
XNo

i

T2
ij ¼ 1; j˛No. This condition xes the overall

normalization of the N coefficients Bij for each j.
We can now obtain the No � No scattering matrix S� for incoming wave

boundary conditions, appropriate for photodissociation. Combining the nal
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wave function in eqn (15) with the denition of the coefficients T in eqn (19) gives
the wave function for solution j in channel i (i, j ˛ No) as follows,

Fij ¼ p�1=2aiðR/NÞTij sin
�
fi þ psj

�
¼ 1

2ı
p�1=2aiTij

�
eıfiþıpsj � e�ıfi�ıpsj

�
:

(26)

Henceforth we will use the asymptotic value of the open channel phase,
fi(3i,R / N) ¼ kiR + di.

The following superposition corresponds to an asymptotic wave function
incoming boundary condition,

F�
ij ¼

XNo

r¼1

e�ıpsrFirTrj
�1e�ıdi

¼ 1

2ı
p�1=2ai

"
eıkiRdij � e�ıkiR

 
e�ıdi

XNo

r¼1

Tire
�ı2psrTrj

�1e�ıdi
!# (27)

and we can identify the asymptotic open–open (No � No) scattering matrix S�(E)
as

S ij
� ¼ e�ıdi

 XNo

r¼1

Tire
�ı2psrTrj

�1
!
e�ıdj ; (28)

where sr is the asymptotic phase in channel i and the unitary matrix T is dened
as T ¼ CB cos ps + SB sin ps. The matrix S�(E) will have strong energy-
dependence reective of the sharp long-range resonances, characterized by
rapid change in the total eigenphase of the scattering matrix. The positions of the
resonances can be obtained from the derivative of the cumulative eigenphase,

d
X
r

psrðEÞ
.
dE, and the width is obtained from the full width at half maximum

(FWHM) for each peak. The positions of the peaks allow us to determine the value
of the quantum defect by reference to eqn (2). The shis compared to the pure
Coulomb potential are expressed in terms of either the quantum defect itself,
m(E), or equivalently the effective quantum number, n* ¼ n � m(E).
4 Calculations

The ab initio potential energy curves and the non-adiabatic couplings are taken
from Wolniewicz et al.12,38 for states 2–61S+

g and from Detmer et al.47 for 7–
91S+

g. The non-adiabatic couplings are particularly strong for R < 20 a.u. The
potential energy curves are shown in Fig. 3. The gure includes the ion-pair
potential and the ionisation limit in terms of the H+

2 ground state. Weakly avoi-
ded crossings between the ion-pair potential and the adiabatic potential energy
curves appear at R z 36 a.u. (H(1s) + H(3l) dissociation limit) and R z 280 a.u.
(H(1s) + H(4l) dissociation limit). Table 1 includes indicative principal quantum
numbers to provide a sense of the outer turning point on the ion-pair potential for
the vibrational states at corresponding energies.

At large internuclear distances (R > 10 a.u.) the ion-pair (HR) states are accu-
rately described by the Coulomb interaction energy between the positive and
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 212, 175–190 | 183
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Fig. 3 Potential energy curves for H2 of 1S+
g symmetry. The potential energy curves are

taken fromWolniewicz et al. for states 2–6 (ref. 12 and 38) and fromDetmer et al. for states
7–9.47 The H+

2 ground-state potential is also included, as is the ion-pair potential. The
position of the n ¼ 2000 HR state is indicated by a vertical line, with the classical turning
point Rtp at 8700 a.u. and the position of Rf (see Fig. 2). The unusual barrier shape in the
region of Rz 10 on the excited potential energy curves can be understood using a simple
Fermi model as contact potential interactions between a colliding H(1s) atom and an
almost-Rydberg H(3l) atom.48,49 Note that the scale of the axis for the internuclear distance
R is logarithmic. For R > 60 a.u. the potential energy curves are continued analytically.

Table 1 Table of features in 1S+
g potential energy curves. For each feature we include the

principal quantum number n* and the classical outer turning point in the ion-pair potential
at the corresponding energy

Feature n* Rtp (a.u.)

H(1s) + H(2l) dissociation limit 68.72 11.08
H(1s) + H(3l) dissociation limit 128.52 36.05
H(1s) + H(4l) dissociation limit 362.30 286
Outer well state 7 (at R ¼ 33.8 a.u.) 128.68 36.13
Barrier on state 7 (at R ¼ 8.7 a.u.) 193.53 81.56
At n ¼ 100 energy 100 22
At n ¼ 200 energy 200 87
At n ¼ 1000 energy 1000 2177
At n ¼ 2000 energy 2000 8709
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negative ion given by eqn (1) with the ion-pair dissociation energy DH+H� ¼
�0.527751014 a.u. (ref. 38 and 50) and the polarizability of H�(1s2) aH� ¼ 211.897
(a.u.)3 (see ref. 51 and also footnote§). The reduced mass for H2 isMH2

z 918.0764
a.u.53

For the model diabatic calculation, we construct an effective diabatic potential
Eion,diab(R) from the H�H1Sg ab initio adiabatic state calculated by Wolniewicz38

and the asymptotic ion-pair potential in eqn (1).50,51 The potentials are merged as
follows,
§ Note that the electron affinity can be calculated as Eea ¼ DH+H� � EH� � EH and that the value of the
electron affinity obtained this way differs somewhat from the value �0.0277196153 a.u. reported by
Radtzig et al.52
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Eion,diab(R) ¼ g(R)Eion(R) + (1 � g(R))EH �H(R), (29)

where the mixing function g(R) is dened as g(R < 33) ¼ 0, 0 < g(33 < R < 35.5) ¼
(R � 33)/2.5 < 1, and nally g(R > 35.5) ¼ 1. Resonance positions on the diabatic
model potential are determined using the shooting method, while all other
calculations are done using the full machinery described in Sections 3.2 and 3.3.
5 Results and discussion

Tables of calculated long-range vibrational HR resonances for J¼ 0, 1, and 2 in the
energy interval [�0.554933, �0.536094] a.u., corresponding to principal quantum
numbers n ¼ 130–235, are provided in the ESI,† listing the energy, effective
quantum number and FWHM width of each resonance. This energy region
corresponds to previous measurements by Ubachs et al.7,8 The overall agreement
for line (resonance) positions is good. In contrast, the calculated widths, which
decrease from 26 cm�1 to 2.4 cm�1 across the range n ¼ 130–235, are systemat-
ically narrower than those observed in experiments. The source of this discrep-
ancy must relate to decay channels other than predissociation that are not
included in the present calculations, with ionisation most likely since these states
are known to exhibit autoionisation.19

The main physics underpinning the progression of line positions across the
range n ¼ 160–230 is assessed by comparison to the simple diabatic model
constructed from H�H1S+

g and the ion-pair potential (see Section 4). A comparison
between the line positions resulting from the full log derivative–MQDT hybrid
calculation and the model in this energy region show that the model follows the
pattern of line positions closely, with only a comparatively small and almost
constant off-set (Fig. 4).

It therefore appears that a large portion of the energy dependence in the
quantum defect, m(E), can be attributed to the vibrational wavefunction accu-
mulating phase on the diabatic H�H potential. The model diabatic potential and
a bound state on that potential are shown in Fig. 5. Note that states on the model
potential are technically bound states, and that the model in its current form
Fig. 4 Quantumdefects for J¼ 0 HR states in the range n¼ 160–230 calculated using the
full log derivative/MQDT approach outlined in the article, as well as a simple diabatic
model (see text for details). The model calculations follow the trend for the full calculation
closely.
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Fig. 5 Effective potential (merged H�H and ion-pair potential) together with the bound n¼
160 radial wavefunction.
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cannot make predictions of line widths. Given the importance of interferometric
lifetime modulation in HR states, and the complexity of the H2 potentials in the
interaction region, it is doubtful that a meaningful simplied model could be
constructed for the lifetimes (widths).

We now proceed to the part of the HR spectrum just below the ion-pair
dissociation limit. Using the hybrid log derivative–MQDT approach we calculate
a narrow range with principal quantum number 1990 < n < 2010 as shown in Fig. 6
for total angular momenta J ¼ 0, 1, and 2. The line positions are quite regular,
with nearly constant quantum defects m(E) across the range. The widths, on the
other hand, exhibit modulation across the range, with different variation in line
widths for the different angular momenta J ¼ 0, 1, 2. The calculated width for the
state n ¼ 2000 is 5 � 10�4 cm�1, corresponding to a lifetime of approximately 10
ns. This is almost an order of magnitude shorter than the observed lifetimes
reported by Ubachs et al.4 Since one would normally expect the calculations to
over-estimate lifetimes on the basis that not all decay channels are included in the
calculations, this lends support to the notion that such high-n HR states have
a strong tendency to undergo J-mixing by external elds, analogous to the l-mixing
that occurs in electronic zero electron kinetic energy (ZEKE) spectroscopy.
Fig. 6 Progression of heavy Rydberg resonances around the principal quantum number
n¼ 2000 for J¼ 0, 1 and 2. These states have classical turning points at around Rtp¼ 8700
a.u.
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Term values of the vibrational levels supported by the adiabatic H�H potential
of Wolniewicz have been calculated up to n ¼ 39 (Eb ¼ 8000 cm�1) and we include
a complete table of resonances in the energy region Eb ¼ 1800–6000 cm�1(ESI†)
calculated by solving the close-coupled equations for seven 1S+

g states. If the
vibrational numbering is known, the absolute quantum defect follows from
�m(Eb)¼ n*� n� 1� J, where n* ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRy=EbÞ

p
. Such m(Eb) plots, both frommodel

potentials and experimentally, for a wide range of ion-pair states have been shown
to be nearly linear over a wide range of Eb values as the dissociation limit is
approached. Thus, if experimental Tv values are used from fragmentary spectra in
which the absolute vibrational numbering is not known, n is adjusted so that the
n(Eb) values for a partial progression lie on the m(Eb) plot extrapolated from
regions of known numbering. If the numbering is changed by �1, clear discon-
tinuities in the sections of the m(Eb) plot result.

The various calculated m(Eb) values for the H�H state are summarized in Fig. 7.
The high vibrational levels presented in this paper cover the range Eb ¼ 25.5–
25 cm�1 and, if positioned on the extrapolated m(Eb) plot, indicate a quantum
defect of �63.8 at Eb 25 cm�1. The condition n[ m is sometimes taken to dene
HR behaviour, and this is certainly fullled by the levels in Fig. 7. The broader
m(Eb) dependence in Fig. 7 indicates that there is no abrupt transition from a HR
region to one deeper in the potential well in which the vibrational spacing
becomes sensitive to the position of the inner wall of the potential, even aer
Fig. 7 Quantum defect plot for the vibrational levels of the H�H1S+
g state for n0 ¼ 0 up to

n0 ¼ 2010. The absolute quantum defects, �m(Eb), are plotted as a function of the binding
energy Eb below the ion-pair dissociation limit. Previously calculated term values for n0 ¼
0–40 are taken from ref. 54. The break in slope at Eb z 13 000 cm�1 corresponds to the
top of the barrier between the electronic and heavy Rydberg potentials (n0 ¼ 16). Calcu-
lated resonances lie between Eb¼ 2000 and 6000 cm�1 (see the ESI†). The highest energy
resonances, close to the ion-pair dissociation limit, are indicated by the extrapolated point
close to the vertical axis (Eb z 25 cm�1). Note that the point on the y-axis corresponds to
the states shown in detail in Fig. 6. Finally, the position of the crossings for n ¼ 3 and n ¼ 4
limits are indicated by arrows.
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interruptions by avoided crossings that predissociate parts of the progression. In
the H�H state, the potential has a potential maximum at Eb � 12 000 cm�1 and the
vibrational numbering to larger Eb is that of the outer well only, whose outer wall
continues initially to have a dominantly coulombic potential.

6 Conclusions

The vibrational energy levels of the H�H state of H2 have been calculated very close
to dissociation, between the n ¼ 3 and n ¼ 4 asymptotes, under fully coupled
conditions with the six other 1S+

g states. All of the H�H levels are subject to weak
predissociation into the H +H* (n¼ 3) channel and their widths indicate lifetimes
�10 ns (n � 2000) arising from this. The absolute quantum defects associated
with these levels are close to 64 and, with n� 2000, they clearly can be classied as
heavy Rydberg states.

The calculations presented here complete the sequence of HR vibrational
levels associated with the EF1S+

g and H�H1S+
g states, the observed resonance

structure and the higher n1S+
g states that are bound by the Coulomb potential.

This is the rst report of HR states above the n ¼ 4 limit. HR behavior has now
been observed from n ¼ 0 of the outer F1S+

g potential, through the vibrational
levels of the H�H1S+

g state and up to within z25 cm�1 of the ion-pair dissociation
limit.

The analogous vibrational systems in the 1S+
u manifold have been shown to

have HR character from n ¼ 0 of the B1S+
g state, through the B�B1S+

u state, and
diabatically through the n ¼ 3 asymptote up to the limit of the published reso-
nance structure. However, the region between the n ¼ 4 asymptote and the ion-
pair dissociation limit for the 1S+

u manifold remains to be investigated.
Work is underway to include ionisation by coupling the inner-most region

(R < 10 a.u.) to the electronic continuum via a generalised R-matrix approach.
The conceptual framework for incorporating ionisation and dissociation within
an R-matrix formalism is already established.55–58 Judging by the present calcu-
lations, the effect of including ionisation on the line positions will be compara-
tively minor. In contrast, one should expect the effect on the line widths to be
more signicant, and a full account of the mixing with electronic Rydberg states
will provide an understanding of how valence and electronic Rydberg states
channel excitation intensity to heavy Rydberg states.
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