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A scalable, operationally easy intermolecular hydrophosphinylation of
various unactivated alkenes with H-P(O) compounds via an Ag()-
initiated free radical process was developed. Mechanistic studies
including electron-spin-resonance (ESR) and radical clock experi-
ments suggest that atom transfer processes were involved in this
system.

As a large class of important and valuable building blocks,
organophosphorus compounds are widely applied in the
synthesis of pharmaceuticals, agrochemicals and materials." In
the past few decades, considerable advances have been made to
construct C-P bonds.> Among them, one of the most atom-
economical and attractive strategies is the direct hydro-
phosphinylation of alkenes.® The free-radical strategies for the
addition of a P-H or (O)P-H bond to alkenes represent one of
the most important methods to form a C-P bond.* Although
this radical addition using peroxide,® AIBN,® Et;B,” air/
nitrogen,® and organic dye/photoirradiation® etc. as the radical
initiators has been achieved, more efficient and practical
strategies are still highly desirable.

As our continuous investigations on the C-C bond formation
via free-radical processes,'® we began to question whether a C-P
bond could be formed via a single-electron-transfer (SET)
process. As demonstrated in Scheme 1, single-electron oxida-
tion of the secondary phosphine oxide followed by a deproto-
nation would generate a P-centered free radical. Addition of the
phosphinyl radical to an olefin followed by hydrogen abstract
from the phosphine oxide would lead to the product by hydro-
phosphinylation of alkene and regenerate the phosphinyl
radical. Fortunately, we successfully accomplished an Ag()-
initiated intermolecular hydrophosphinylation of a wide range
of unactivated alkenes with phosphites (Scheme 1).
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Initially, a series of experiments were carried out to test the
hypothesis for hydrophosphinylation of unactivated alkenes
with phosphites through a one-electron transfer process. It can
be seen from Table 1 that the desired product was isolated in
nearly quantitative yield by using catalytic amount of AgF
(20 mol%), which was more efficient than other silver salts such
as Ag,CO3, AgNO;, and AgOAc etc. (Table 1, entries 1-7). Further
optimization of the typical reaction conditions indicated that
the solvent, concentration as well as the temperature also
affected the reaction efficiency (entries 8-12). Furthermore,
addition of persulfates such as K,S,0g and (NH,),S,0g could
slightly raise the yield of the product (entries 13 and 14).

The substrate scope and functional group tolerance were
demonstrated in Scheme 2. A wide range of terminal and
internal unactivated alkenes are compatible to this system
(entries 1-25). Various functional groups such as ester, halogen,
ether, hydroxyl, amide and ketone etc. can all be well-survived. It
is noteworthy that the free radical addition didn't happen at the
internal C=C double bond but the terminal one when 7-(but-3-
en-1-yloxy)-2H-chromen-2-one was used as the substrate (entry
13). (E)-Oct-2-ene afforded a regio-isomers with the ratio of 1.7/1
(entry 19). 2-Vinylpyridine also gave the corresponding product
25 in high yield. However, styrene and its derivatives are not
effective in this system. Notably, H-phosphinates and H-phos-
phonates are proven to be effective substrates (entries 26-28).
For example, ethyl phenylphosphinate afforded the desired
product in 95% yield (entry 26). Addition of the dimethyl
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Scheme 1 Free radical hydrophosphinylation of alkene via SET.
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Table 1 Modification of the typical reaction conditions®

Cl o .ra.cliical Cl o
o . H-B—Ph initiator o ||=|’—Ph

\
I N Ph R

(o)

Radical initiator

Entry (mol%) Solvent (mL) T (°C) Yield” (%)
1 — DMF (2) 110 —
2 Ag,CO; (20) DMF (2) 110 63
3 AgNO; (20) DMF (2) 110 26
4 AgOAc (20) DMF (2) 110 50
5 AgF (20) DMF (2) 110 96
6 AgF (5) DMF (2) 110 46
7 AgF (10) DMF (2) 110 70
8 AgF (20) DMSO (2) 110 16
9 AgF (20) CH,CN (2) 110 95
10 AgF (20) DMF (1) 110 60
11 AgF (20) DMF (3) 110 81
12 AgF (20) DMF (2) 80 20
13° AgF (20) DMF (2) 110 97
144 AgF (20) DMF (2) 110 98

% Reaction conditions: pent-4-en-1-yl 4-chlorobenzoate (1 equiv., 0.25
mmol), diphenylphosphine oxide (4 equiv., 1.0 mmol) 24 h, unless
otherw1se noted. ? Isolated yields. ¢ K,S,05 (3 equiv., 0.75 mmol) was
added. ¢ (NH,),S,05 (3 equiv., 0.75 mmol) was added.

phosphonate and diethyl phosphonate to pent-4-en-1-yl
4-chlorobenzoate gave the corresponding products in 33%
and 45% yields, respectively (entries 27 and 28). Obviously,
H-phosphonates afford relatively low yields of the desired
products, which might be due to the stability of the P-centered
radicals. Finally, this reaction can be easily scaled up to gram
level, which suggests that it can be potentially applied in
chemical industry (eqn (1)).

cl cl
\©\’( 9 AgF (0.89 mmol) \©Y Q
o + H=p—ph T CETTTOD o R—Ph
R Ph DMF (36 mL), ) g™ (1)

o 110°C, 24 h

{(1.0g,4.5mmol) (3.7 g, 17.8 mmol) {1.6 g, 83% isolated yield)

Mechanistic studies including radical clock and ESR were
carried out to confirm the previously proposed free radical
process. As depicted in Scheme 3, ((4-methyl-1-tosylpyrrolidin-3-
yl)methyl)diphenylphosphine oxide was obtained in 40% yield,
which might proceed a radical addition/cyclization cascade
process (Scheme 3a). In addition, ethyl 2-cyclopropylacrylate led
to a ring opening product 30 in 42% yield (Scheme 3b).
Furthermore, a series of experiments were designed to get
evidences of key radical intermediates through spin trapping
technology and ESR. As a result, the ESR signal of a P-centered
radical species (g = 2.0060, ay = 1.411 mT; ay = 1.888 mT; ap =
3.475 mT) was observed by using 5,5-dimethyl-1-pyrroline
N-oxide (DMPO) as a radical spin trap (Scheme 4). Overall, the
proposed free radical addition mechanism is supported by
these studies.

In summary, a silver(1)-triggered free radical intermolecular
C-P bond formation has been developed. A variety of
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Scheme 2 AgF-promoted hydrophosphinylation of alkenes with H-P(O).
“Reaction conditions: alkene (1 equiv., 0.25 mmol), organophosphorus
compounds (4 equiv., 1.0 mmol), AgF (20 mol%, 0.05 mmol), DMF (2 mL),
110 °C, 24 h, unless otherwise noted. PIsolated yields. K,S,0g(3 equiv.,
0.75 mmol) was added. 4NH),5,0s(3 equiv., 0.75 mmol) was added.

alkyldiphenylphosphine oxides, alkyl phosphinates as well as
alkyl phosphonates can be facilely prepared via addition of
H-P(O) compounds with unactivated alkenes by using this
strategy. The features of wide substrate scope, completely anti-
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Scheme 3 Radical clock experiments.
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Scheme 4 ESR studies. ESR spectrum of a solution of pent-4-en-1-yl
4-chlorobenzoate (5.0 x 1072 mol L™%), diphenylphosphine oxide (0.2
mol L™, AgF (1.0 x 1072 mol L™Y), and DMPO (6.0 x 1072 mol L™} in
DMF (2 mL), 110 °C for 2.5 h.

Markovnikov addition and scalability make this methodology
attractive to organophosphorus synthetic chemistry. Radical
clock and ESR studies support the free-radical addition
pathway.
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