Emerging chiral molecular carbon materials for chiroptoelectronic applications
Abstract
Chirality is a ubiquitous phenomenon in nature and continues to inspire modern materials science. Among various chiral systems, chiral carbon materials have been extensively developed, with their chirality flexibly tuned through molecular-level chemical design and further amplified by solid-state intermolecular assembly. By incorporating different functional groups, these carbon materials can be tailored to exhibit excellent light-emitting and light-absorbing properties, making their chiral forms suitable for emitting or detecting circularly polarized light. In this review, we first introduce the basic concepts of chiral materials and spectroscopic chiroptical responses, and explain how chirality is introduced into molecular carbon systems through chemical design. We then systematically summarize recent research progress in chiral optoelectronic (chiroptoelectronic) applications that incorporate chiral carbon materials. Furthermore, we analyze the dissymmetry factors of each system and offer perspectives on strategies to enhance performance. We believe that this review will attract broad attention from interdisciplinary researchers working on carbon materials, chirality science, and optoelectronics.
- This article is part of the themed collection: Journal of Materials Chemistry C Recent Review Articles