Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder marked by dysregulated immune responses and pyroptosis of intestinal epithelial cells, a type of programmed cell death that aggravates inflammation. Current therapeutic strategies frequently encounter limitations in both efficacy and specificity. Herein, we developed a calcium manganese-based (CaMn2O4) pancatalytic nanozyme designed to mitigate pyroptosis and alleviate IBD symptoms. The calcium manganese-based nanozyme exhibits dual enzyme (catalase and superoxide dismutase)-mimetic catalytic activities, scavenging reactive oxygen species and suppressing GSDMD cleavage, a key mediator of pyroptosis. In vitro studies demonstrated that the CaMn2O4 nanozyme significantly reduced pyroptotic cell death in lipopolysaccharide (LPS)/nigericin (Ni)-stimulated cells. In a murine colitis model, CaMn2O4-based nanozyme treatment attenuated inflammatory infiltration, preserved epithelial barrier integrity, and downregulated pyroptosis-related markers. This study highlights the potential of pancatalytic nanotherapy targeting pyroptosis as a novel strategy for IBD treatment.

Graphical abstract: A calcium manganese-based pancatalytic nanozyme as a cell pyroptosis inhibitor for efficient inflammatory bowel disease treatment

Page: ^ Top