Self-organization of photonic structures in colloidal crystals in the AI era
Abstract
The advent of smart-engineered photonic materials, a development primarily influenced by the cutting-edge technology of artificial intelligence (AI), has ushered in a new era of unprecedented control over the manipulation and propagation of light. AI has been a driving force in the evolution of smart-engineered photonic materials, pushing the boundaries of what was once thought possible. Over the past few decades, using rationally engineered photonic structures for the unconventional control of light has become one of the most exciting frontiers in photonics and materials science. These artificially structured optical media, which include photonic crystals, plasmonic components, and optical metamaterials, have led to transformative changes in the entire vistas of optics science. Photonic crystals (PhCs) have gained significant attention from researchers due to their ability to self-assemble. PhCs exhibit physical properties such as photonic bandgaps, high reflectance/transmittance, low loss, and lasing in the visible range of wavelengths needed for optical systems of desired performance. For the application of these properties, significant efforts are being made to explore novel, cost-effective fabrication methods to develop 3D-PhCs based on nanoscience and nanotechnology, with AI playing a pivotal role. Nano-PhCs have enhanced optical and lasing properties, resulting in miniaturized optoelectronic systems with higher measurement reliability than existing systems. Keeping such advancements in view, this review discusses the latest techniques explored in AI technology to fabricate nano-PhCs, the specific role of AI in the fabrication process, and, notably, their potential applications in energy harvesting and artificial intelligence.
- This article is part of the themed collection: Advances in nanophotonics, plasmonics, and nano-optics