Advancing ovarian cancer care: recent innovations and challenges in the use of MXenes and their composites for diagnostic and therapeutic applications
Abstract
Ovarian cancer remains the deadliest form of gynecologic malignancy, largely owing to the absence of reliable early diagnostic tools and the limited effectiveness of current therapeutic strategies. Recent advances in nanotechnology—particularly the emergence of two-dimensional materials known as MXenes—offer promising avenues to address these challenges. This review highlights the emerging role of MXenes and their composites in the management of ovarian cancer, focusing on their potential in biomarker detection and targeted treatment strategies. We provide a comprehensive analysis of the latest studies examining the physicochemical features of MXenes, their synthesis and surface functionalization approaches, and their application in ovarian cancer, including biosensing, drug delivery, and combinatorial therapeutic systems. MXene-based biosensors have shown remarkable detection limits in detecting ovarian cancer biomarkers, such as cancer antigen 125 (CA125), human epididymis protein 4 (HE4), lipolysis-stimulated lipoprotein receptor (LSR), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). However, several challenges remain, including issues of biocompatibility, structural stability, and clinical scalability. Continued interdisciplinary research is essential to address these limitations, optimize MXene functionalization, and translate their laboratory success into clinical settings. With appropriate advancements, MXenes hold significant promise for enabling more precise, efficient, and patient-specific approaches to ovarian cancer diagnosis and therapy.
- This article is part of the themed collection: Recent Review Articles