Fast, general-purpose metabolome analysis by mixed-mode liquid chromatography–mass spectrometry

Abstract

Comprehensive metabolomics requires robust and efficient analytical techniques capable of addressing the chemical diversity, complexity, and high sample throughput demands characteristic of large-scale studies. We introduce a rapid, mixed-mode liquid chromatography method that uniquely integrates anion exchange and hydrophobic interactions within a single stationary phase. Employing an optimized ternary gradient, our method achieves comprehensive separation of diverse metabolite classes over a wide range of polarities within only 4 minutes per run. The performance was tested with standards for ca. 1000 metabolites. For two-thirds of 94 isomeric sets, we could achieve a separation of 2 or more seconds, which is sufficient for correct identification. We demonstrate robustness over 500 consecutive injections of bacterial extracts and with the analysis of complex matrices like plasma, cecum extracts, and urine. Throughout, retention time drifts were <1 s. Our mixed-mode LC-MS approach offers a routine throughput of 360 samples per day per instrument and is ideally suited for studies that require rapid and comprehensive metabolic profiling.

Graphical abstract: Fast, general-purpose metabolome analysis by mixed-mode liquid chromatography–mass spectrometry

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Jun 2025
Accepted
29 Sep 2025
First published
02 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Analyst, 2025, Advance Article

Fast, general-purpose metabolome analysis by mixed-mode liquid chromatography–mass spectrometry

M. S. P. Correia, A. Othman and N. Zamboni, Analyst, 2025, Advance Article , DOI: 10.1039/D5AN00641D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements