Pnictogen-based vanadacyclobutadiene complexes†
Abstract
The reactivity of the V![[triple bond, length as m-dash]](https://www.rsc.org/images/entities/char_e002.gif) CtBu multiple bonds in the complex (dBDI)V
CtBu multiple bonds in the complex (dBDI)V![[triple bond, length as m-dash]](https://www.rsc.org/images/entities/char_e002.gif) CtBu(OEt2) (C) (dBDI2− = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6-iPr2C6H3) with unsaturated substrates such as N
CtBu(OEt2) (C) (dBDI2− = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6-iPr2C6H3) with unsaturated substrates such as N![[triple bond, length as m-dash]](https://www.rsc.org/images/entities/char_e002.gif) CR (R = Ad or Ph) and P
CR (R = Ad or Ph) and P![[triple bond, length as m-dash]](https://www.rsc.org/images/entities/char_e002.gif) CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ2-C,N-tBuCC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ2-C,C-tBuCPCAd) (3). Complexes 1–3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% 15N-enriched isotopologue (dBDI)V(κ2-C,N-tBuCC(Ad)15N) (1-15N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes. A systematic comparison with the known vanadacyclobutadiene (dBDI)V(κ2-C,C-tBuCC(H)CtBu) (4) is also presented. Theoretical investigations into the electronic structure of 2–4 highlight the crucial role of unique V–heteroatom interactions in stabilizing the vanadacyclobutadienes and identify the most dominant resonance structures.
CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ2-C,N-tBuCC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ2-C,C-tBuCPCAd) (3). Complexes 1–3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% 15N-enriched isotopologue (dBDI)V(κ2-C,N-tBuCC(Ad)15N) (1-15N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes. A systematic comparison with the known vanadacyclobutadiene (dBDI)V(κ2-C,C-tBuCC(H)CtBu) (4) is also presented. Theoretical investigations into the electronic structure of 2–4 highlight the crucial role of unique V–heteroatom interactions in stabilizing the vanadacyclobutadienes and identify the most dominant resonance structures.
- This article is part of the themed collection: 2024 Chemical Science HOT Article Collection
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        
