Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Remarkable magnetic anisotropy provides more possibilities in electronic devices such as quantum information storage and processing. Here, based on first-principles calculations, we identified a series of magnetic adatoms including 12 d-type and 8 p-type members with estimated high structural stability and large magnetic anisotropy energy (MAE). Among the p-type systems, a giant MAE up to 157 meV was predicted for the Pb adatom with out-of-plane magnetization and up to 313 meV for Bi with in-plane magnetization. By analyzing the density of states and the p-orbital-resolved MAE, the large MAEs are found to mainly derive from the orbital hybridization of degenerated px/y near the Fermi levels, which is induced by the synergistic effect of the ligand field and significant spin–orbit coupling interaction. In addition, by comparing various magnetic configurations of Pb/Bi atomic kagome/hexagonal/triangular magnetic lattices, we found that their magnetization keeps the same direction as that of the single Pb/Bi adatom, which further confirms the robust magnetic anisotropy of the individual Pb/Bi adatom on the graphane surface. Our findings provide a promising platform for the realization of atomic scale memory.

Graphical abstract: Giant magnetic anisotropy of adatoms on the graphane surface

Page: ^ Top