Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Organic nonlinear optical (NLO) materials are very important for high-speed information processing in addressing the challenges of reduced energy consumption and enhanced speed and bandwidth. In particular, organic second-order NLO materials are very promising for meeting the combined requirements of ultra-low energy and ultra-high bandwidth in electro-optic (EO) modulation, while organic third-order NLO materials have good potential for applications in ultra-speed all-optical signal processing (AOSP). This review highlights the recent significant progress made in organic second- and third-order NLO materials. For second-order NLO materials, the recent advances in the efficient and cost-effective synthesis of dipolar polyene chromophores and thin-film engineering for efficient electric field poling are summarized. The applications and prospects of these high-performance EO materials are also discussed. For third-order NLO materials, we discuss the molecular design strategies of cyanine dyes for AOSP applications, particularly focusing on anionic tricyanofuran (TCF)-based cyanines. We aim to provide a better understanding of the structure–property relationships for cyanine-based AOSP materials. Finally, a summary and outlook for advancing high-performance organic NLO materials are provided.

Graphical abstract: High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing

Page: ^ Top