Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We report on the use of a novel tritopic phosphonic linker, 2,4,6-tris[3-(phosphonomethyl)phenyl]-1,3,5-triazine, for the synthesis of a layered zirconium phosphonate, named UPG-2. Comparison with the structure of the permanently porous UPG-1, based on the related linker 2,4,6-tris[4-(phosphonomethyl)phenyl]-1,3,5-triazine, reveals that positional isomerism disrupts the porous architecture in UPG-2 by preventing the formation of infinitely extended chains connected through Zr–O–P–O–Zr bonds. The presence of free, acidic P–OH groups and an extended network of hydrogen bonds makes UPG-2 a good proton conductor, reaching values as high as 5.7 × 10−4 S cm−1.

Graphical abstract: Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers

Page: ^ Top