Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The isothermal decomposition process of CL-20/HMX co-crystals was studied through an isothermal decomposition dynamics research method. The pressure versus time curves of the gas generated by the CL-20/HMX co-crystal thermal decomposition present a significant inflection point at the decomposition extent of 70%. Furthermore, the residue of the CL-20/HMX co-crystals was investigated by HPLC and FTIR spectroscopy to understand the decomposition process. The results manifest that the decomposition of the CL-20/HMX co-crystals before and after the inflection point conforms to different model equations with the activation energies of 149.3 kJ mol−1 and 169.0 kJ mol−1, respectively. The thermal decomposition of the CL-20/HMX co-crystals is a coupling process. Clearly, the decomposition rate of CL-20 is much higher than that of HMX before the inflection point; CL-20 is almost consumed when the inflection point is reached in the pressure–time curve of the CL-20/HMX co-crystal thermal decomposition and then, HMX accelerates the thermal decomposition of the CL-20/HMX co-crystals.

Graphical abstract: The isothermal decomposition of a CL-20/HMX co-crystal explosive

Page: ^ Top