Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Graphene network (GN) was synthesized by a two-step chemical vapour deposition (CVD) method, involving the thermal annealing sputter-coated Cu film to form a Cu network by annealing for CVD deposition of graphene onto the Cu network catalyst. The resultant graphene network was transferred onto a flexible and transparent polymer (e.g., PDMS) substrate while maintaining its porous structure and integrated interconnection, providing both good optical transparency (e.g., transmittance of 86% at 550 nm wavelength) and mechanical flexibility. Flexible and transparent all-solid-state supercapacitors based on the newly-developed graphene network were fabricated to exhibit an area specific capacitance of 4.2 μF cm−2 at a discharge current of 0.1 μA with a high optical transparency (transmittance of 84%), which outperforms devices based on uniform multi-layer graphene sheet.

Graphical abstract: Graphene networks for high-performance flexible and transparent supercapacitors

Page: ^ Top