Materials and systems with tunable optical and spectroscopic properties have attracted much research interest for applications in adaptive camouflage technologies. Within this context, our laboratory has developed bioinspired surface wrinkling-based adaptive camouflage platforms with tunable visible-to-infrared properties. Herein, we build upon these efforts and report the scalable fabrication of squid skin-inspired ultraviolet-visible-near-infrared adaptive camouflage systems with improved response times and predictable spectroscopic functionalities. These findings lay the groundwork for the iterative computational design, high-throughput manufacturing, and performance optimization of analogous adaptive camouflage, heat management, light-to-heat conversion, rewritable optical, and electromagnetic shielding technologies.