Cobalt oxide–supported iridium oxide nanoparticles with strong metal oxide–support interaction for efficient acidic oxygen evolution reaction

Abstract

Understanding and regulating the deprotonation process in an acidic oxygen evolution reaction (OER) is highly desirable for a proton exchange membrane water electrolyzer (PEMWE). Herein, ultrasmall IrO2 nanoparticles were firmly anchored on an acid-resistant Co3O4 support (IrO2/Co3O4) through galvanic replacement, with strong metal oxide–support interaction (SMOSI) induced and responsible for the accelerated deprotonation process during OER. For IrO2/Co3O4, a low overpotential of 256 mV at 10 mA cm−2 could be achieved for an acidic OER, with sustained operation exceeding 1000 h. More importantly, a PEMWE assembled with IrO2/Co3O4 as the anode could survive 120 h and 40 h of operation at industrial-level current densities of 0.5 and 1 A cm−2, with cell voltages of 1.64 and 1.77 V, respectively. Experimental results and theoretical calculations together demonstrate that the SMOSI induced by the lattice-mismatched interfaces in IrO2/Co3O4 could increase the p-band center of Obri (bridging oxygen) sites in the Ir–Obri bonds. Such an enhanced p-band center would strengthen the proton acceptance of Obri sites, facilitating the deprotonation process, and thus improving OER activity and stability. This work presents an alternative approach for the regulation of the deprotonation process via SMOSI and the design of an inexpensive and efficient electrocatalyst towards an industrial-level PEMWE.

Graphical abstract: Cobalt oxide–supported iridium oxide nanoparticles with strong metal oxide–support interaction for efficient acidic oxygen evolution reaction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
24 Aug 2025
Accepted
18 Sep 2025
First published
19 Sep 2025

Mater. Horiz., 2025, Advance Article

Cobalt oxide–supported iridium oxide nanoparticles with strong metal oxide–support interaction for efficient acidic oxygen evolution reaction

H. Deng, C. Dong, T. Thi Thuy Nga, M. Wang, Y. Wang, Y. Wang and S. Shen, Mater. Horiz., 2025, Advance Article , DOI: 10.1039/D5MH01620G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements