The uncontrolled dendritic lithium growth and excessive volume expansion pose significant challenges to the practical applications of metallic lithium, which is considered as the most promising high-energy-density anode material for rechargeable batteries. In this work, derived from metal organic framework (MOF), we design a novel Ag@nitrogen-doped porous carbon framework (Ag@NPCF) composite with silver (Ag) nanoparticles uniformly distributed. The 3D MOF microporous structure effectively stabilizes the volume changes during the repetitive plating/stripping of Li. Lithiophilic nitrogen-doped carbon and Ag nanoparticles, acting as uniform nucleation sites reduce local current density and guide uniform nucleation and deposition of Li ions. Therefore, the Ag@NPCF electrodes displayed excellent cyclic stability for over 600 cycles with 98.8% coulombic efficiency and a stable cyclic lifespan of 1600 h in the symmetrical cells. Additionally, full cells coupled with an LiFePO4 commercialized cathode deliver excellent cyclic and rate performance.