Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The quest for devices with significantly higher power and energy density has made hybrid supercapacitors a promising alternative for energy storage. These devices have gained traction by combining the exceptional power density of supercapacitive materials with the high energy density of battery-type materials in a single system. Among promising battery-type materials, medium-entropy and high-entropy hydroxides (ME-hydroxides/HE-hydroxides) have attracted growing research interest due to their unique structural characteristics and their potential for tailoring functional properties. This new class of materials represents a significant departure from the traditional concept of low-entropy materials, paving the way for innovative advancements in energy storage technologies. Considering the significant advancements in the past five years, this review focuses on the recently developed ME- and HE-hydroxides for hybrid supercapacitors. It covers their synthesis methods, effective strategies, promising trends, and performance as positive electrode materials. Additionally, the review addresses the inappropriate use of the term “high-entropy”. Finally, the challenges and prospects in designing ME- and HE-hydroxides for hybrid supercapacitors are discussed, offering guidance for the development of new materials to advance future energy storage technologies.

Graphical abstract: From medium- to high-entropy hydroxides for hybrid supercapacitors: a review

Page: ^ Top