Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

To alleviate escalating antibiotic pollution in the environment, there is a pressing need for sustainable antibiotic remediation techniques. Considering this, the present study focuses on entrapping β-lactamase from Bacillus tropicus EMB20 within an agarose matrix, subsequently employing it for the bioremediation of doripenem (a carbapenem antibiotic) and other β-lactam antibiotics. The agarose discs containing entrapped lactamase efficiently hydrolysed 50 mg L−1 of doripenem within 30 min of batch mode treatment. The toxicity of the antibiotic hydrolysed products was assessed using MTT assay and confocal microscopy, revealing their non-toxic nature to the antibiotic-sensitive cells of E. coli BL21 (DE3). These discs were successfully recovered and reused for up to 5 cycles with an efficiency rate of 72%. Furthermore, the discs demonstrated effectiveness in hydrolysing a mixture of antibiotics, including doripenem, meropenem, and amoxicillin, removing 100%, 96.4%, and 71.5% of each antibiotic after 30 min of treatment. This enzymatic treatment process was upscaled using a continuous mode fixed-bed column bioreactor (FBCR) packed with layers of lactamase-entrapped agarose discs and sand gravels. Remarkably, a mixture of doripenem, amoxicillin, and meropenem (each at 50 mg L−1) was completely removed after a retention time of 20 min in the FBCR. This setup proved to be reusable for up to 5 cycles. Overall, the study emphasises the potential of utilising these β-lactamase-entrapped agarose discs as an effective remediation tool to control antibiotic pollution from the environment.

Graphical abstract: Applicability of β-lactamase entrapped agarose discs for removal of doripenem antibiotic: reusability and scale-up studies

Page: ^ Top