Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The purpose of this tutorial review is to provide a comprehensive explanation of plasmon-enhanced spectroscopies, such as plasmon-enhanced Raman scattering, fluorescence, absorption, Rayleigh scattering, and hyper Raman scattering. Plasmon-enhanced spectroscopy implies the spectroscopy of enhanced optical responses of molecules in close proximity to plasmonic nanostructures, resulting in a strong enhancement in sensitivity. In this review, we explain the enhancement in plasmon-enhanced spectroscopy as an optical response of a molecule interacting with an optical resonator, which represents a plasmonic nanostructure, in analogy to cavity quantum optics to easily understand all types of plasmon-enhanced spectroscopy in the same manner. The keys to understanding the enhancement factor of each plasmon-enhanced spectroscopy are a quality factor and a mode volume of plasmonic resonators, which are well-known parameters in the Purcell effect of standard optical cavity resonators.

Graphical abstract: Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics

Page: ^ Top