Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

There are two components to the review presented here regarding simulations of collisions of protonated peptide ions peptide-H+ with organic surfaces. One is a detailed description of the classical trajectory chemical dynamics simulation methodology. Different simulation approaches are used, and identified as MM, QM + MM, and QM/MM dependent on the potential energy surface used to represent the peptide-H+ + surface collision. The second are representative examples of the information that may be obtained from the simulations regarding energy transfer and peptide-H+ surface-induced dissociation, soft-landing, and reactive-landing for the peptide-H+ + surface collisions. Good agreement with experiment is obtained for each of these four collision properties. The simulations provide atomistic interpretations of the peptide-H+ + surface collision dynamics.

Graphical abstract: Chemical dynamics simulations of energy transfer, surface-induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with organic surfaces

Page: ^ Top