Themed collection Editor’s Choice: Computational studies of nanomaterials for energy, catalysis and electronics

25 items
Minireview

Fusion growth patterns in atomically precise metal nanoclusters

This mini-Review summarizes the fusion growth patterns of metal nanoclusters based upon M4, M13 and M14 building blocks.

Graphical abstract: Fusion growth patterns in atomically precise metal nanoclusters
Open Access Minireview

Multiscale atomistic simulation of metal nanoparticles under working conditions

Recent theoretical advances in simulating the structural evolution of metal/alloy nanoparticles under working conditions are reviewed, coupled with the qualitative comparison to the experiments and a brief introduction of MOSP software.

Graphical abstract: Multiscale atomistic simulation of metal nanoparticles under working conditions
Review Article

Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites

Atomistic details govern quantum dynamics of charge carriers in metal halide perovskites, which exhibit properties of solid state and molecular semiconductors, as revealed by time-domain density functional theory and nonadiabatic molecular dynamics.

Graphical abstract: Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites
From the themed collection: Nanoscale Most Popular 2021 Articles
Communication

Flexoelectricity in atomic monolayers from first principles

We study the flexoelectric effect in fifty-four select atomic monolayers using ab initio Density Functional Theory (DFT).

Graphical abstract: Flexoelectricity in atomic monolayers from first principles
Communication

MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy

MnX (X = P, As) monolayers: room-temperature ferromagnetic half-metallicity and sizable magnetic anisotropy.

Graphical abstract: MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy
Paper

Semiconducting α′-boron sheet with high mobility and low all-boron contact resistance: a first-principles study

Design of fully boron-sheet-based FETs in the real 2D atomically-thin limit.

Graphical abstract: Semiconducting α′-boron sheet with high mobility and low all-boron contact resistance: a first-principles study
From the themed collection: 2021 Nanoscale HOT Article Collection
Paper

Quantum confinement in group III–V semiconductor 2D nanostructures

Band gap variation in group III–V semiconductor slabs due to quantum size effects.

Graphical abstract: Quantum confinement in group III–V semiconductor 2D nanostructures
Paper

An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein–ligand binding affinity

Modifying the energy term and considering the entropic contribution by IE method significantly improve the accuracy of predicted binding free energy in MM/PBSA method.

Graphical abstract: An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein–ligand binding affinity
Open Access Paper

Molecular generation targeting desired electronic properties via deep generative models

A generative recurrent neural network (RNN) model was developed to target and explore the chemical space of electronic donor–acceptor oligomers effectively.

Graphical abstract: Molecular generation targeting desired electronic properties via deep generative models
Paper

Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction

Electrochemical nitrogen reduction reaction (NRR) is a promising route to produce ammonia under mild conditions. Single-atom W supported on BP was screened as a promising electrocatalyst with high catalytic activity, stability, and selectively for NRR.

Graphical abstract: Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction
Paper

Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer

A single V atom anchored on h-BN exhibits outstanding catalytic activity for the NRR with a low onset potential of 0.25 V.

Graphical abstract: Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer
Paper

Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride

A stable 2D van der Waals (vdW) heterobilayer constituted by boron monophosphide (BP) and Gallium Nitride (GaN) monolayers for different kinds of energy conversion and nanoelectronics.

Graphical abstract: Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride
Paper

Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation

MoS2 edges exhibit good hydrogen evolution reaction (HER) activity but poor oxygen evolution reaction (OER) activity.

Graphical abstract: Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation
Paper

Defect-enriched tunability of electronic and charge-carrier transport characteristics of 2D borocarbonitride (BCN) monolayers from ab initio calculations

Development of inexpensive and efficient photo- and electro-catalysts is vital for clean energy applications.

Graphical abstract: Defect-enriched tunability of electronic and charge-carrier transport characteristics of 2D borocarbonitride (BCN) monolayers from ab initio calculations
Paper

Plasmonic nanoparticle simulations and inverse design using machine learning

Ultrafast and computing resource-saving prediction of the far- and near-field optical properties of plasmonic nanoparticles and inverse design of their dimensions from the far-field spectra can be realized using machine learning.

Graphical abstract: Plasmonic nanoparticle simulations and inverse design using machine learning
Paper

Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation

Single Mo center supported on N-doped black phosphorus is predicted to be a compelling highly efficient and durable catalyst for electrochemical N2 fixation by density functional theory calculations.

Graphical abstract: Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation
Paper

Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties

Two indium-based double perovskites, Cs2InCuCl6 and (CH3NH3)2InCuCl6, were proposed as promising materials for photovoltaic and optoelectronic applications with a suitable band gap and exceptional optical and electrical properties.

Graphical abstract: Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties
Paper

A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst

The hydrogenation of CO2 to CH3OH is one of the most promising technologies for the utilization of captured CO2 in the future.

Graphical abstract: A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst
Paper

Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures

The magnetism and electronic structure in the FeI2 monolayer are manipulated by In2Se3 polarization in FeI2/In2Se3 van der Waals heterostructures.

Graphical abstract: Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures
Open Access Paper

Graphene and novel graphitic ZnO and ZnS nanofilms: the energy landscape, non-stoichiometry and water dissociation

Ab initio energy landscapes of thin ZnO and ZnS films reveal new structures, non-stoichiometry and different behaviour of adsorbed water.

Graphical abstract: Graphene and novel graphitic ZnO and ZnS nanofilms: the energy landscape, non-stoichiometry and water dissociation
Paper

Understanding the interplay between size, morphology and energy gap in photoactive TiO2 nanoparticles

Faceted anhydrous anatase TiO2 nanoparticles (NPs) are found to exhibit higher than bulk electronic energy gaps and be more energetically stable than their spherical counterparts for diameters >∼2 nm. Annealing the latter gives rise to core–shell NPs with significantly lower energy gaps and improved potential for photocatalysis.

Graphical abstract: Understanding the interplay between size, morphology and energy gap in photoactive TiO2 nanoparticles
Paper

III–VI van der Waals heterostructures for sustainable energy related applications

III–VI van der Waals heterostructures are potential candidates in sustainable energy related areas.

Graphical abstract: III–VI van der Waals heterostructures for sustainable energy related applications
Paper

Unexpected monoatomic catalytic-host synergetic OER/ORR by graphitic carbon nitride: density functional theory

Although single metal atoms (SMAs) have been extensively investigated as unique active sites in single-atom catalysts, the possible active sites of the host catalysts have been unfortunately neglected in previous studies.

Graphical abstract: Unexpected monoatomic catalytic-host synergetic OER/ORR by graphitic carbon nitride: density functional theory
Paper

Intrinsic multiferroicity in two-dimensional VOCl2 monolayers

The coexistence of ferroelectricity and magnetism in VOCl2 monolayer which is mechanically strippable from the bulk material offers a tantalizing potential for high-density multistate data storage.

Graphical abstract: Intrinsic multiferroicity in two-dimensional VOCl2 monolayers
Open Access Paper

Rational design of C2N-based type-II heterojunctions for overall photocatalytic water splitting

We screened 2D monolayers to explore the materials which could be used to fabricate type-II heterojunctions with C2N monolayers to further improve their photocatalytic performance.

Graphical abstract: Rational design of C2N-based type-II heterojunctions for overall photocatalytic water splitting
25 items

About this collection

Professor Xiao Cheng Zeng (University of Nebraska-Lincoln, USA), Associate Editor for Nanoscale and Nanoscale Advances, introduces his Editor’s Choice collection.

“Computational nanomaterials research has been playing a growing role over the past decade in the design of new nanomaterials, bringing deeper insights into novel properties of nanomaterials, supporting and corroborating experimental research, and gathering new data for machine learning and model development.

This online collection from Nanoscale and Nanoscale Advances covers several active areas of computational nanomaterials research, including design and/or investigation of nanoscale and single-atom catalysts, low-dimensional ferromagnetic, ferroelectric and multiferroic materials, low-dimensional semiconductors, halide perovskites, protein-ligand binding affinity, plasmonic nanoparticles, and metal nanoclusters. We hope this themed collection will be informative to contemporary computational nanomaterials research.”

Spotlight

Advertisements