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Blue- and white-light emitting 2D metal–organic
frameworks of cis-5-norbornene-endo-2,3-
dicarboxylic acid†
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Abdul Nasar Kalanthoden,a Almaz S. Jalilov*c and Abdul Malik P. Peedikakkal *ab

Two-dimensional (2D) materials have recently gained increased attention owing to their potential

applications in catalysis and as luminescent materials in optoelectronics. Herein, we report the synthesis of

two distinct blue- and white-light emitting crystalline 2D-metal organic frameworks (MOFs) using cis-5-

norbornene-endo-2,3-dicarboxylic acid (NDA) as a ligand with Pb(NO3)2 [Pb(NDA)] (1) and Zn(OAc)2·2H2O

[Zn(NDA)] (2), respectively. Compound 1 forms hepta-coordinated Pb(II) geometry with greater distortion,

resulting in a 2D MOF with a (4,4) network topology. In contrast, in 2, Zn(II) centers are linked through NDA

ligands to furnish a 2D MOF. The final structural characteristics of the synthesized compounds were

significantly impacted by the carboxylic acid ligand. Upon excitation at 365 nm, compound 2 displayed

blue-light emission, while compound 1 demonstrated near-white-light emission of solid-state

photoluminescence (PL). The differing emissions of the two 2D sheets were associated with the bridging

NDA ligand and the relative structural differences between the 2D structures. The shortest non-bonded

metal-to-metal distance is lower in 1 than that in 2. Compound 1 exhibits a higher packing efficiency of

bridging-metal centered clusters of layers; such packing is less pronounced in compound 2 because of the

differences in coordination geometries. These differences profoundly affect the luminescent characteristics

of 1 and 2.

Introduction

Luminescent metal–organic frameworks (MOFs) have gained
significant consideration owing to their simple synthesis,
biomedical imaging properties, versatile design capabilities,
luminescent functional sites, nonlinear optics, fluorescence
recognition, and high practical value in lighting and
displays.1–5 Recently, many synthetic efforts have focused on
synthesizing numerous luminescent MOFs using lanthanides,
transition metals, and main group metals.5,6 These materials
offer tunable luminescence properties, including white-light
emitting features.7 Among these approaches, the use of white-

light-emitting materials is a highly engaged subject in
luminescent MOF studies.7,8 Nevertheless, the emission of
many inorganic and organic luminescent compounds is
limited to a specific portion of the visible spectrum. The
majority of white-light emission materials have been
synthesized using methods that involve the combination of
monochromatic emissions.9 To create materials that emit
white light, it is essential to employ straightforward methods
for efficiently adjusting and managing emission colours.10

Currently, the fabrication of white light devices mostly relies
on the integration of multiple components utilizing either the
RGB (red, green, and blue) three-color or YB (yellow, blue)
two-color mixing concepts.11 However, these white-light
emitting materials (WLEMs) consisting of many components
commonly encounter issues such as color imbalance and
instability due to the varying degradation rates of each
luminescent component and challenges in managing energy
transmission.11 Investigations are ongoing to address these
issues, and relevant findings have been reported for various
materials, such as organic molecules, coordination polymers,
nanomaterials, and others.12 Single-component WLEM
systems are more advantageous than multicomponent
systems owing to their ease of reproduction and simple
preparation. However, effectively managing the appropriate
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blending of various emission centers in multicomponent
systems remains a difficult task.13,14 Because of the
availability of a wide range of organic and inorganic small
molecules, it is possible to create organic–inorganic hybrid
metal halides (OIMHs) with specific crystal architectures.15

These OIMHs can be adjusted in terms of their molecular
size and possess unique photovoltaic properties. Another
notable feature is color tuning, which is achieved by
adjusting temperature and has potential applications in
temperature measuring.16 Moreover, they enhanced the
quality of light in their preferred lighting products by
incorporating high-performance near-UV LED 365 nm
phosphor-converted LEDs. Fan et al.17 successfully
synthesized an organic–inorganic hybrid structure that
exhibits adjustable emission ranging from orange-red to
blue. This tunability is achieved by varying the Pb/Sn
metal ratio or adjusting the excitation laser. They
successfully achieved white-light emission and a
remarkable photoluminescence (PL) quantum yield of 39%.

Two-dimensional (2D) MOFs hold significant potential in
various applications.18 However, there are still difficulties in
creating stable materials with consistent synthesis methods
and comprehending the exact relationships between
synthesis factors and material properties. Hence, the
development of robust and highly efficient 2D MOFs for
optical devices holds immense importance. Currently,
persistent efforts have been devoted to attaining a future
that involves the use of exceptionally effective
electroluminescent (EL) materials.19 Among the many types
of luminescent MOFs, Zn(II) MOFs are particularly
fascinating on account of their unique properties.20 These
metal ions exhibit various geometries and coordination
numbers, and they form various architectures, resulting in
the emission of vibrant blue light.20 Pb(II) exhibits lone pair
effects, which contribute to its tendency to bind various
ligands.21 This unique characteristic of Pb(II) plays a crucial
role in its structural modulation and white-light emission.21

Consequently, its exceptional properties enable both control
and modulation. Furthermore, in this system, the
interaction between the ligand and metal can result in
ligand-to-metal (LMCT) or metal-to-ligand charge transfer
(MLCT). The spherical (s) and principal (p) orbitals of the
Pb(II) center involved in these transitions can cause the
emission of light across a wide range of wavelengths in
Pb(II) based MOFs. Interactions between Pb(II) orbitals can
contribute to the construction of broad-spectrum emission
in Pb(II) MOFs.22,23 The synthesis of 2D lead-MOFs was
achieved by incorporating boron-imidazolate ligands with
deformable Pb(II) halide units.24 This study indicates that
this 2D MOF demonstrates exceptional ability in generating
white light. Efforts to develop blue light-emitting materials
with wide band gaps25 have been ongoing for a considerable
period. However, to successfully create full-color organic
light emitting diodes (OLEDs), it is necessary to address
concerns regarding the efficiency and lifespan of blue
emitting materials. The primary focus of this extensive

study is on the advancement of blue luminescent materials,
primarily utilizing aromatic chemical molecules and organic
polymers.26 Furthermore, the careful selection of ligands27

is essential in creating new MOFs because of their
numerous coordination modes, which meet the geometric
requirements of metal centres to build attractive structural
designs.28 The isomeric form of (±)endo,exo-5-norbornene-
2,3-dicarboxylic acid has been known to act as a ligand in
several metal complexes and MOFs.29 Although several
coordination networks have been explored, the cis-5-
norbornene-endo-2,3-dicarboxylic acid (NDA) with Pb(II) and
Zn(II) have been unexplored. The steric influence and
stereochemistry of the ligand force the formation of 2D
networks. The selection of NDA as a ligand is especially
important because of its specific geometries and steric
arrangement, which enable the construction of 2D MOFs.
Owing to strong steric demand that is inherent in NDA, it
is possible to achieve proper chelation and bridging of
metal centers that are fundamental in the formation of a
2D network topology. This rigidity in coordination together
with the special stereochemistry of the ligand leads to the
formation of 2D networks because there is relatively low
torsional strain and thus high energy for formation of a
metal-to-ligand bond.30 In addition, it has been proved that
the flexibility of NDA to assume specific coordination
modes contributes to the dimensionality of the resulting
frameworks, which suggests that understanding ligands is
crucial for predicting the structure of the final MOFs.31,32

Two MOFs were obtained through the reaction of Pb(II) and
Zn(II) ions with the NDA ligand. These MOFs are denoted
as [Pb(NDA)](1) and [Zn(NDA)](2). Compound 1 was
synthesized by reacting Pb(NO3)2 with NDA dissolved in
DMF, while compound 2 was synthesized through the
reaction between Zn(OAc)2·2H2O and NDA, which was
dissolved in water. Compounds 1 and 2 exhibited a 2D
sheet-like structure, which was formed through the
combined chelating and bridging modes of NDA.
Compound 1 demonstrates PL that emits near white light,
while compound 2 emits blue light when excited at a
wavelength of 365 nm. The details of our investigation are
given below.

Experimental section
Materials and methods

All precursors were commercially obtained and used without
further purification. All solvents used were reagent grade.
The yield of compounds 1 and 2 was measured using the
metal salts Pb(NO3)2 and Zn(OAc)2·2H2O. A PXRD pattern was
obtained using a Rigaku Ultima IV X-ray diffractometer.
Thermogravimetric analysis (TGA) of 1 and 2 was performed
using an SDT 2960 TGA thermal analyzer. Samples were
heated to 800 °C at a rate of 5 °C min−1 under a nitrogen flow
of 50 mL min−1. FT-IR spectra were obtained using KBr
pellets (NICOLET iS10 FT-IR). Solid-state UV-visible spectra
were collected at ambient temperature using a UV-3600
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Shimadzu UV-visible spectrometer equipped with an
incorporating sphere and barium sulphate reflecting
reference. Room temperature steady-state PL measurements
and time-dependent PL measurements were recorded using a
Hamamatsu Quantaurus-Tau Fluorescence lifetime
spectrometer. All of the solid-state spectra for a crystalline
powder of 1 and 2 were recorded at ambient conditions using
glass pellets as sample holders.

Caution! Lead compounds are potentially toxic and must be
utilized in limited amounts and treated carefully.

Synthesis of Pb-MOFs [Pb(NDA)] (1)

A solution containing NDA (12 mg, 0.07 mmol) and
Pb(NO3)2 (23 mg, 0.07 mmol) diluted in 2 mL of DMF was
subjected to heating at 80 °C for 24 h in a closed vial.
Colorless block-like crystals of 1 were produced after 2 days.
After filtration, crystals were obtained and subsequently
dried in a desiccator. Yield: 22 mg (81%). Anal. calcd. for
PbC9H8O4·1.95H2O: C, 25.59; H, 2.84; found: C, 25.09; H,
2.29; selected IR (KBr, cm−1): 3507(w), 2976(w), 1632(m),
1557(s), 1532(s), 1397(s), 1272(m), and 1235(m). Thermal
gravimetric analysis (H2O weight loss %) calcd. 4.44%;
found 5.28%.

Synthesis of Zn-MOFs [Zn(NDA)] (2)

A mixture containing Zn(OAc)2·2H2O (26 mg, 0.12 mmol)
and NDA (12 mg, 0.07 mmol) dissolved in 2 mL of distilled
water was heated at 80 °C for 24 h in a sealed vial.
Colorless block-like crystals of 2 were obtained after 2 days.
The crystals were obtained through filtration and
subsequently dried in a desiccator. Yield: 6.6 mg (22%).
Anal. calcd. for ZnC9H8O4·1H2O: C, 41.02; H, 3.82; found: C,
41.69; H, 3.92; selected IR (KBr, cm−1): 3655(s), 2966(s),
1592(m), 1525(s), 1432(s), 1305(m), 847(s), and 734(s).

Single crystal X-ray crystallographic analysis

The single crystal X-ray analysis of compounds 1 and 2 were
obtained using a Bruker APEX II CCD diffractometer.
Graphite-monochromated MoKα radiation with a wavelength
of 0.71073 Å was used in the diffractometer together with a
sealed tube with a power output of 2.4 kW. SADABS33 was
utilized to perform absorption corrections, while the
crystallographic suite SHELXTL34 was employed for
calculations. The Flack parameter for the non-
centrosymmetric Pb structure was refined to 0.16(3),
confirming that the absolute structure is correctly defined by
atomic coordinates. Crystallographic data, along with details
of data collection and modification for compounds 1 and 2,
are outlined in Table 1.

Results and discussion
Synthesis and characterization

Compound [Pb(NDA)] (1) was synthesized by reacting
Pb(NO3)2 with NDA in a DMF solution. After 48 h of heating,

colorless block-like crystals were produced. Compound
[Zn(NDA)] (2) was synthesized as colorless block-shaped
crystals within two days by reacting NDA with Zn(OAc)2·2H2O
in water. The final topology of the MOFs is affected by
crystallization conditions and the presence of carboxylate
anions.35 The as-synthesized crystals of compounds 1 and 2
were studied using powder X-ray diffraction studies (Fig. S6
and S7†). The PXRD patterns of the as-synthesized samples
closely matched the simulated patterns from crystallographic
data, showing the formation of highly pure compounds. FT-
IR spectra of both compounds were determined (as shown in
Fig. S8 and S9†).

Thermogravimetric analysis (TGA) was conducted on
compounds 1 and 2 (Fig. S10 and S11†). The initial weight
loss in compound 1 indicates the loss of adsorbed water
molecules, which is consistent with elemental analysis.
Thereafter, the compound started to decompose as the
temperature increased to 300 °C. Compound 2 remains
stable up to 400 °C, as shown in Fig. S11.†

The FT-IR spectrum of compound 1 (Fig. S8†) shows
asymmetric stretching vibration of the carboxylate group at
1632 cm−1, with a symmetric stretching at 1397 cm−1. The
difference between these values (Δν = νasym − νsym) is 235
cm−1, suggesting that the carboxylate ligand is coordinated
to Pb(II) in a bidentate manner. Similarly, in compound 2
(Fig. S9†), carboxylate group asymmetric stretching is
observed at 1592 cm−1, and symmetric stretching at 1334
cm−1, with a Δν of 258 cm−1, also indicating bidentate
coordination to Zn(II).

Crystal structures of compounds 1 and 2

Single crystal X-ray structural analysis was investigated for
compound 1, which shows that the compound crystallized
in an orthorhombic system with Z = 8 in the space group
Iba2. The fundamental unit of 1 is displayed in Fig. S1.†
Pb(II) has a significantly distorted heptacoordinated

Table 1 Crystallographic data for 1 and 2

Compounds 1 2

Crystal system Orthorhombic Monoclinic
Empirical formula C9H8O4Pb C9H8O4Zn
Formula weight 387.34 245.52
Temperature/K 299(2) 299(2)
Space group Iba2 P21/c
a/Å 8.7725(6) 11.2667(5)
b/Å 23.311(2) 9.0284(4)
c/Å 8.6198(6) 9.2720(4)
α/° 90 90
β/° 90 107.830(2)
γ/° 90 90
Volume/Å3 1762.7(2) 897.74(8)
Z 8 4
ρ, Mg cm−3 2.919 1.816
μ/mm−1 19.124 9.208
refln collected 37 026 24 073
Independent reflns/Rint/GoF 2240/0.0863/0.942 2634/0.0531/0.935
Final R[I > 2σ (I)], R1/wR2 0.0310/0.0715 0.0443/0.1235
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geometry, with a stereochemically active lone pair at the
Pb(II) metal center, as shown in Fig. S2 and S3.† The
stereochemically active lone pair on Pb(II) plays an essential
role in shaping the structure, adding a unique distortion
that leads to the formation of a non-centrosymmetric
framework. The carboxylate of NDA strongly coordinated to
the Pb(1) atoms through chelating and bridging
coordination modes [Pb(1)–O(1), 2.551(1) Å; Pb(1)–O(2),
2.503(8) Å; Pb(1)–O(3), 2.405(8) Å; Pb(1)–O(4), 2.619(1) Å].
Furthermore, the combination of Pb(1) with the NDA ligand
results in the construction of metal bridged clusters
consisting of [Pb(O2CC–)] along the ac plane, as shown in
Fig. 1a. This, in turn, leads to the construction of a 2D
MOF with a four-connected topology, as depicted in
Fig. 1b–d. However, the 2D frameworks exhibit slightly
corrugated layers of (4,4)-networks when the Pb(1) metal
atoms connected. The average non-bonded distance between
the two adjacent Pb(1) atoms is 4.4 Å, as shown in the
Fig. 1c. There are two non-bonded distances between the
opposite Pb(1) atoms, measuring 5.5 Å and 6.9 Å, as shown
in Fig. 1c. The interlayer distance between the two layers is
10.7 Å, as shown in Fig. 1d.

Compound 2 forms crystals in the P21/c space group
within a monoclinic system, with Z = 4. The fundamental
unit of 1 is displayed in Fig. S3.† Zn(II) metal centers exhibit
tetrahedral geometry, with two carboxylates acting as
bridges. The Zn(1) ion coordinates with the carboxylate

oxygen atoms of the NDA ligand [Zn(1)–O(2), 1.939(2) Å;
Zn(1)–O(1), 1.980(2) Å; Zn(1)–O(3), 1.967(2) Å; Zn(1)–O(4),
1.961(2) Å]. NDA connects to three Zn(II) metal centers using
two carboxylate ligands, as shown in Fig. 2a. This
connectivity results in the formation of a 2D sheet with a
(4,4) network topology, as displayed in Fig. 2b. In contrast,
no corrugated layers are present in 2 as we observed in 1.
The average non-bonded shortest metal-to-metal distance is
4.6 Å in a single layer, as shown in Fig. 2b. The average
non-bonded distances between the two opposite metal
centers are 5.3–6.7 Å, as shown in Fig. 2b. The shortest
interlayer distance between the two layers is 11.2 Å. The
shortest non-bonded metal–metal distances are larger in 2
in comparison to that in 1. The interlayer distances in 2 are
also found to be higher than those in 1. Furthermore, the
packing efficiency of bridged-metal centered clusters is
higher in 1 in comparison to that in 2, as observed in
Fig. 1c and 2c. The highest BFDH relative area is 0.194
along the (020) face in 1 compared with the highest relative
area of 0.179 along the (100) face in 2.

Optical properties

Chemical sensors, electroluminescent displays, and
photochemistry are among the few potential applications of
compounds 1 and 2 owing to their photoluminescent
properties. Herein, the PL of 1 and 2 was confirmed

Fig. 1 (a) A portion of the 2D sheet structure of 1. (b) Illustration of the (4,4) network topology in 1 with various metal-to-metal distances. (c)
Perspective view of the single 2D layer. (d) Perspective view of the three 2D layers in 1. The distance between the two adjacent layers is 10.7 Å.
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through solid-state PL analysis at room temperature. Fig.
S12† displays the UV-vis spectra of solid-state compounds 1
and 2, with intense absorbance below 240 nm and a
shoulder extending to the visible region of the spectrum. As
shown in Fig. 3a, upon excitation at 365 nm, compound 1
showed PL emission with a broad emission range of 390–
690 nm at ambient temperature in its solid state. The
emission maximum for 1 appeared at 530 nm. Compound
2 emits at a rather narrower range of 390–490 nm upon
excitation at a wavelength of 365 nm, with an emission
maximum at 430 nm, which corresponds to blue emission.
The ligand NDA in DMF is known to emit light at an
emission maximum of 440 nm upon 365 nm excitation.
The emission of NDA is caused by π–π* and n–π*
transitions.

The PL emission peak maximum of 1 showed a red shift
in wavelength to 90 nm in comparison to the ligand. As
shown in Fig. 3a, compound 2 showed a higher in PL
emission intensity at 440 nm with 365 nm excitation in
comparison to the free ligand. In contrast to compound 1,
the PL emission peak maximum of compound 2 was found
to be blue shifted by about 8 nm relative to the ligand. The
PL emission in both compounds 1 and 2 is attributed to
the significant effect of the metal centers, which results in
both blue and red shifts in PL emission maxima compared
to the free ligand. The PL emission in both compounds is
due to the substantial role of the metal ions, which is
evident from the time-resolved PL emission spectra shown

in Fig. 3b–d. Time-resolved PL emission decays for 1 and 2
can be fitted with three-component exponential decay. PL
emission decay for compound 1 at 530 nm exhibits an
average excited state lifetime of 8.2 ns, while compound 2
exhibits a shorter average lifetime of 3.1 ns. The longer
lifetime of 1 in comparison to 2 is attributed to a distinct
PL emission mechanism for 1 that is common in Pb-based
materials. This mechanism is often attributed to a more
delocalized excited state structure, such as self-trapped
excitons. This proposed excited-state structural dynamics of
compounds 1 and 2 matched the structural differences seen
in crystallographic data.36,37 Pb-based materials, particularly
2D perovskites, commonly show a WHE mechanism due to
self-trapped exciton emission from bulk materials.38–41

Therefore, owing to the longer emission lifetime and larger
Stokes shifts observed for 1, its PL emission mechanism
could be correlated with the analogous PL emission
mechanism of Pb-based materials, although further
evidence is required to substantiate this proposal. Fig. 4
shows the CIE chromaticity diagram, which shows the
emission of measurable colors. According to this diagram,
when excited at a wavelength of 365 nm, the chromaticity
parameters of 1 are (0.27, 0.34), whereas the values of 2 are
(0.17, 0.12), indicating white and blue light emissions,
respectively. Compound 1 displays an extremely noticeable
emission that is close to the white-light zone, as the
chromaticity diagram illustrates. It is difficult to achieve
excellent white light emitting material. However, as depicted

Fig. 2 (a) A portion of the 2D sheet structure of 2. (b) Illustration of the (4,4) network topology in 2 with various metal-to-metal distances. (c)
Perspective view of the single 2D layer. (d) Perspective view of the three 2D layers in 2. The distance between the two adjacent layers is 11.2 Å.
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in Fig. 4, compound 1 has a prominent peak at 570 nm
with a red-shifted emission. This emission is highly near

pure white, as indicated by the CIE coordinates. Thus,
compound 1 has a promising potential for the development
of white-light emitting materials.

Conclusion

Two 2D MOFs were synthesized using NDA as a ligand with
Pb(II) and Zn(II) metal ions. The synthesized MOFs display
distinct photophysical properties, which are correlated with
structural differences seen in the crystallographic data. Both
1 and 2 form 2D sheet-like geometries by chelating and
bridging carboxylate ligands of NDA. The interaction of the
dicarboxylate ligand in specific stereochemistry results in the
formation of two different 2D sheets. Both compounds
exhibit PL emission at room temperature in their solid state.
In particular, compound 1 emitted near white light, whereas
compound 2 emitted blue light. Differences in PL emission
properties are attributed to self-trapped exciton emission in
compound 1, which is in agreement with the shifts together
with the structural differences in the distances between the
2D sheets and inter-metallic centers. We anticipate that this
research will provide new insights into a deeper
understanding of the underlying characteristics of MOF
structures and for creating more advanced WLE materials.

Fig. 3 a) Unnormalized PL spectra for compounds 1 and 2 as well as for NDA in solid state form at ambient temperature upon excitation at 365
nm. b) Comparison of room temperature time-dependent PL emission spectra for compounds 1 and 2. c) Time-resolved PL emission decay fitting
profile for compound 1 at 530 nm upon excitation at 365 nm. d) Time-resolved PL emission decay fitting profile for compound 2 at 430 nm upon
excitation at 365 nm.

Fig. 4 CIE chromaticity diagram for compounds 1 and 2 (λex = 365
nm). The photograph shows the emission of 1 and 2 solids when
exposed to light.
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