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École Centrale School of Engineering, Mahin

E-mail: shampa.raghunathan@mahindraun

† Electronic supplementary information
microstate counting; DGtr vs. solvent mo
values for varying n-site model. See DOI: h

Cite this: RSC Adv., 2024, 14, 25031

Received 5th April 2024
Accepted 5th July 2024

DOI: 10.1039/d4ra02576h

rsc.li/rsc-advances

© 2024 The Author(s). Published by
le surface area-assessed molecular
basis of osmolyte-induced protein stability†

Shampa Raghunathan *

In solvent-modulated protein folding, under certain physiological conditions, an equilibrium exists between

the unfolded and folded states of the protein without any need to break or make a covalent bond. In this

process, interactions between various protein groups (peptides) and solvent molecules are known to play

a major role in determining the directionality of the chemical reaction. However, an understanding of the

mechanism of action of the co(solvent) by a generic theoretical underpinning is lacking. In this study,

a generic solvation model is developed based on statistical mechanics and the thermodynamic transfer

free energy model by considering the microenvironment polarity of the interacting co(solvent)–protein

system. According to this model, polarity and the fractional solvent-accessible surface areas contribute

to the interaction energies. The present model includes various orientations of participating interactant

solvent surfaces of suitable areas. As model systems, besides the backbone we consider naturally

occurring amino acid residues solvated in ten different osmolytes, small organic compounds known to

modulate protein stability. The present model is able to predict the correct trend of the osmolyte–

peptide interactions ranging from stabilizing to destabilizing not only for the backbone but also for side

chains. Our model predicts Asn, Gln, Asp, Glu, Arg and Pro to be highly stable in most of the protecting

osmolytes while Ala, Val, Ile, Leu, Thr, Met, Lys, Phe, Trp and Tyr are predicted to be moderately stable,

and Ser, Cys and Histidine are predicted to be least stable. However, in denaturing solvents, both

backbone and side chain models show similar stabilities in urea and guanidine. One of the important

aspects of this model is that it is essentially parameter-free and consistent with the electrostatics of the

interaction partners that make this model suitable for estimating any solute–solvent interaction energies.
Introduction

Biochemical reactions in living organisms take place in
aqueous environments, oen containing various small organic
molecules.1,2 In the equilibrium protein folding reaction,
unfolded (U) # native (N), no covalent bonds are broken or
formed, instead an equilibrium exists with solvent interactions
causing certain changes to the folded or unfolded states of the
protein.3 Osmolytes are small organic compounds known to
modulate protein stability, and are ubiquitous in living organ-
isms mainly to counter the osmotic stress,1,4,5 hence they play
a role in pharmaceuticals.6 Denaturing osmolytes push the
equilibrium toward U, whereas protecting osmolytes push the
equilibrium toward N.7 Urea, naturally found in bacteria8 and
mammals,9 has been extensively used as a chemical denaturant
in solvent-assisted protein denaturation studies.10–12 A favorable
protein–osmolyte interaction enhances the preference for
protein conformations with greater solvent-exposed surface
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area, i.e., the unfolded state.13–16 Alternatively, protecting
osmolytes play a central role in stabilizing intracellular proteins
in order to control osmotic stress in marine organisms.1 Tri-
methylamine N-oxide (TMAO) – a protecting osmolyte – favors
the native structure of a protein and its stabilization has oen
been discussed by means of its exclusion from the vicinity of the
protein surface.17,18 However, in the case of mixed-component
solutions the effect of protein-denaturing osmolytes can be
counteracted by protecting ones.19 In a recent experimental
study, both types of osmolytes, stabilizing (betaine) and desta-
bilizing (urea), were shown to exert an enthalpy effect on the
hydration sphere of the protein in both folded and unfolded
forms.20 To date, such osmolyte-induced protein stability has
been characterized by the transfer free energy (TFE)21–23 model
which reveals that denaturing/protecting osmolytes are prefer-
entially accumulated/excluded around the protein backbone in
single-component osmolyte solutions.7 Nevertheless, there is no
universal molecular theory that can explain the mechanism of
osmolyte-induced protein stability. Mechanistic inferences
from the past studies suggest that the dominant driving force
could be the interaction of osmolyte with either the backbone,7

or the side chain,24 or even both.14,25
RSC Adv., 2024, 14, 25031–25041 | 25031
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Existing conventional methods for calculating solvation free
energies with the atomistic molecular dynamics (MD) simula-
tions are classied into two types: (1) implicit and (2) explicit
solvation free energy methods.26 Both come with advantages
and disadvantages considering the cost of computing solute–
solvent interactions. Implicit solvation models give a quick
qualitative estimate of the free energies whereas explicit solva-
tion models calculate quantitative free energies. Due to high
computational cost, explicit models are oen limited to a solute
consisting of few tens of atoms interacting with a few hundreds
of small solvent molecules.27,28 Computed free energies are
shown to be force eld dependent12,29 especially in case of urea
and TMAO which are the most widely studied solvents to
investigate co-solvent effects on protein stability.30Nevertheless,
to obtain a generic model for a range of stabilizing to destabi-
lizing solvents31,32 consistency measures would play a factor33

while choosing a force eld that might have been parameterized
to predict a particular physical phenomenon. Further compli-
cations may arise for multi-component solvent mixtures34 where
each type of solute–solvent interaction differs from another.35 In
a TFEmodel, the solvation free energy of a solute in pure solvent
is subtracted from the solvation free energy of the same in
solvent mixtures.36 Many theoretical and experimental studies
of two-component37 and three-component solvent30 mixtures
have been shown to work successfully with the TFEs applying
conventional thermodynamics integration methods.26 While
the development of solvation models has beneted from
solvation free energy calculations using conventional methods,
Fig. 1 Schematic view of an interaction. (a) A 3-site backbone model (N+

negative (SA−), and neutral (SA0) charges as was originally proposed.7 (b
surface areas with partially positive (SA+), negative (SA−), and neutral (SA0)
will have now 7 sub-sets. See ESI, Fig. S1† for more on microstate coun

25032 | RSC Adv., 2024, 14, 25031–25041
a generic solvationmodel for solute inmulti-component solvent
mixtures is lacking.

Above all else is the undeniable fact that solvent interac-
tions38 play a very important role in the protein denaturation/
renaturation process. Having identied the problem at hand,
in the present study a statistical mechanics model is developed
based on the polarity and the fractional solvent accessible
surface areas (SASA) of the interacting molecule, inspired by
TFE model of Street et al.7 This model was shown to reproduce
transfer free energies of peptide backbones for a range of
stabilizing to destabilizing osmolytes. The interaction energy is
a function of the peptide polarity and the interaction degen-
eracy, the latter being a function of the SASA of osmolytes. One
of the main aspects of this work is that the model proposed here
is fairly generic, and it considers the fundamental electrostatic
interactions between a pair of interaction partners while
explicitly considering the accessible surface areas instead of just
point-charges.

Recent studies have shown how microenvironment polarity
modulates many-fold protein stability in the presence of solvent
molecules. A single-atom substitution induces signicant
stability without altering the amino acid sequence and structure
of a protein.39,40 Therefore it is important to include all sub-sets
of interactions (between solute and solvent) for quantitative
prediction. The existing backbone model7 was lacking (i)
a generic framework for the backbone as well as side chains, (ii)
a suitable method for choosing interaction sites, (iii) an n-site
model beyond 3-site, (iv) a regular protocol for electrostatics,
O−O−) and solvent accessible surface areas with partially positive (SA+),
) A 3-site model with solute atoms O, N, and C and solvent accessible
charges as proposed in the current work. Consequently, a 3-site model
ting.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02576h


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 3

0.
07

.2
02

5 
03

:3
6:

45
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and (v) a method for microstate formation by considering all
possible permutations of solute charge sites interacting with
a solvent surface of a given polarity.

In the current work a generic model is developed. In case of
a 3-site peptide backbone model C, N, O atoms are chosen as
charge sites instead of choosing N, O, O7 arbitrarily. The current
model is exible about choosing interaction sites. In the regular
protocol for electrostatics, for example, atomic partial charges
are used for computing interaction energies. A method is
introduced for generating sub-sets of microstates.

The 3-site (N+O−O−) backbone unit with a single backbone
conguration7 does not include any sub-sets (see Fig. 1a). In the
current study, multiple congurations of solute interaction sites
are considered based on the presence of the charge sites. For
example, in case of a 3-site (C N O) model (see Fig. 1b), the
number of solute interaction sites are as follows: one congu-
ration with 3 charges, three congurations with 2 charges each,
and three congurations with 1 charge each. Now, each of the
congurations incorporates all possible orientations following
the same principle stated in ref. 7 (described in detail in Section
2). Presently, partial charges of atoms are used from the popular
force elds CHARMM,41 and OPLS42 for proteins. We further
extend the evaluation of our model by applying it to nineteen
naturally occurring amino acids (glycine excluded) besides the
backbone. The current study explores the osmolyte–protein
interactions via their constituent side chains’/backbone’s
impact on the protein stability. We show that our generic model
is able to produce reasonable free energies of amino acids for
a diverse set of stabilizing and destabilizing osmolytes in
a mixed solvent environment.
Methods and models
SASA-based solvation model

In the model proposed here, polar interactions are of prime
concern, and it relies on fundamental principles of chemistry,
e.g., the oxygen atom is the most electronegative, followed by
nitrogen, then carbon and sulfur (O > N > Cz S). In this model,
peptides are divided into three groups: (1) polar positive (the
amide nitrogen, bearing a partial positive charge), (2) polar
negative (the carbonyl oxygen, bearing a partial negative
charge), and (3) nonpolar (neutral atoms), resulting in three
Fig. 2 Molecular structures of various osmolytes, shown in space-filling
(blue), and carbon (grey); protecting osmolytes are TMAO, sarcosine, bet
urea and guanidine.

© 2024 The Author(s). Published by the Royal Society of Chemistry
different interaction sites (i, j, k). This model treats all nitrogen
and oxygen atoms as equally polar. Solvents are divided into
three groups based on their polar surface areas, e.g., surface
areas (SAs) with partially positive (SA+), negative (SA−), and
neutral (SA0) charges. Thus, three types of peptide–solvent
interactions are dened for these three groups: favorable,
unfavorable, and neutral, having energies of −1, 1, and
0 kcal mol−1, respectively. Favorable interactions occur between
polar groups with opposite charges (polar positive/SA− or polar
negative/SA+), unfavorable interactions are between polar
groups with like charges (polar positive/SA+ or polar negative/
SA−), and neutral interactions involve nonpolar groups
(nonpolar/SA0). Therefore, i, j, k can vary between +, −,
0 resulting in a total of 33 = 27 possible microstates, with
degeneracies (energetically equivalent ways of making an
interaction).
n-Site model

Fig. 1b demonstrates the model for a 3-site case including all
possible sub-sets accounting for microenvironments. For an
interaction site containing nP number of sites taken k at a time,
there can be many combinations excluding the empty set,

X

0#k# nP

C
�
nP; k

� ¼ 2n
P � 1: (1)

For example, for an interaction site containing 3 sites (nP =
3) will give to 7 unique congurations. Each conguration will
follow eqn (1)–(7) (ESI, Section 1†). The Boltzmann distribution
over different congurations gives the nal transfer free energy.

Eight stabilizing osmolytes (trimethylamine N-oxide
(TMAO), betaine, sarcosine, proline, trehalose, sucrose, glycerol
and sorbitol), a destabilizing osmolyte (urea) and a related
denaturant (guanidine) (see Fig. 2) are considered in the present
study. They are further categorized into: (1) methylamines:
TMAO, betaine, and sarcosine; (2) sugars: sucrose, trehalose; (3)
polyols: glycerol, sorbitol. All solvent accessible polar and
nonpolar SAs were taken from an earlier study.7 A probe radius
of 1.4 Å was used. Twenty one amino acids including two
neutral and one positively charged histidine residues Hsd, Hse,
and Hsp, respectively, constitute a set of model systems studied
here. Glycine was not considered (see Fig. 3). Plots were made
representations and color-coded by atom type. Oxygen (red), nitrogen
aine, proline, sucrose, trehalose, glycerol, sorbitol, and denaturants are

RSC Adv., 2024, 14, 25031–25041 | 25033
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Fig. 3 Molecular electrostatics of amino acid side chains and backbone (bb). Atomic partial charges assigned in the CHARMM force field to 21
amino acids (Gly was excluded, and three protonated states of histidine, Hsd, Hse and Hsp were included). n-Number of atomic charges define
the n-site model. For example, amino acids Ala and Phe use 1-site and 6-site models, respectively. For Leu, the g-carbonwhich is buried, was not
included as a charge site.

25034 | RSC Adv., 2024, 14, 25031–25041 © 2024 The Author(s). Published by the Royal Society of Chemistry
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using the Python toolkit RDKit.43 At rst model structures were
converted into SMILES44,45 strings, then similarity maps were
constructed with partial charges extracted from CHARMM
topology les. Different solvent environments were used
including pure water as well as aqueous-osmolytes solutions.
Results
Transfer free energies of the N+O−O− model

Street et al. proposed a quantitative model for solvent (water
and osmolyte) interactions with backbone polar groups (the
amide nitrogen bearing a partial positive charge, and the
carbonyl oxygen bearing a partial negative charge).7 The back-
bone amide nitrogen was assigned one solvent interaction site,
whereas the larger carbonyl oxygen, containing two lone pair
electrons, is assigned two such sites. Together, they make a 3-
site (N+O−O−) model, Fig. 1a. This 3-site model with a single
backbone conguration during interaction with the osmolyte
surface of a given polarity gave identical interaction energies to
what was reported earlier.7 In Fig. 4, the blue triangles represent
those values.

Now, the question is how to realize a 3-site (N+O−O−) model
from interactions between an arbitrary solute with three charge
sites (+1, 0, −1) and polarity-specic solvent surfaces (SA+, SA0,
SA−) irrespective of whether water or osmolyte is used. The
answer is by considering all possible permutations of solute
charge sites and solvent surfaces of specic polarity. This gives
rise to 33 = 27 possible arrangements. They are as follows: 111,
110, 11−1, 101, 100, 10−1, 1−11, 1−10, 1−1−1, 011, 010, 01−1,
001, 000, 00−1, 0−11, 0−10, 0−1−1,−111,−110,−11−1,−101,
−100, −10−1, −1−11, −1−10, −1−1−1. Each one represents
a 3-site model. The 9th one (1−1−1) can be taken as (N+O−O−),
and their corresponding transfer free energies are highlighted
by blue triangles in Fig. 4. The red circles are for those above
mentioned 27 arrangements. One can easily understand that
there will be redundancy, for example, 21st (−11−1) and 25th
Fig. 4 Transfer free energies of various 3-site models. The N+O−O−

configuration is highlighted by blue triangles. Red circles represent all
possible 33 = 27 arrangements between the solute’s three charge sites
(+1, 0, −1) and the solvent’s polarity-specific surfaces (SA+,SA0,SA−).

© 2024 The Author(s). Published by the Royal Society of Chemistry
(−1−11) will give same transfer free energies as the 9th one
(1−1−1), because there are no other parameters to distinguish
them. This whole exercise gives a pretty good test for identifying
the arrangement that gives transfer free energies close to
experimental values. Conformational energies shown in red
circles in Fig. 4 vary over a wider range in the case of sugars and
polyols, and guanidine, than in methylamines, proline, and
urea. Those conformations describe poorly the real scenario, for
example, where all three charge sites have the same charges;
this is especially apparent in case of sorbitol, sucrose and
trehalose. Essentially these three osmolytes have larger surface
areas than other osmolytes too.
Preferential osmolyte interactions with the N+O−O− model

Preferential interaction helps to characterize the concentration
of the solvent near the solute compared to bulk. Here prefer-
ential interactions were computed as average osmolyte occu-
pancy on an interaction site and in the bulk (see ESI, Section
1†). For this, 1 M osmolyte was considered, and the relative
difference between hOprefi and hObulki was scaled.7 Fig. 5 shows
the correlation between the local concentration of the osmolyte
around the model and measured DGtr (transfer free energy)
values. From TMAO to guanidine, a good negative correlation is
seen indicating stabilizing osmolytes have lower local concen-
tration compared to destabilizing osmolytes around the back-
bone. Interestingly, from this graph one can see the result of
a particular conformation is very different than the others. This
arises from the fact that conformation with solute charges q+,
q0, q0 interacts less favorably with the fractional polar surfaces
of the osmolytes, hence its poor contribution. In fact, local
osmolyte concentration around each conformation may tell
about its accumulation/depletion ability.46
Fig. 5 Local osmolyte concentration vs. measured transfer free
energies, DGtr of the 3-site backbone model. DGtr values are given for
all seven conformations of all ten osmolytes. Values for the lone
N+O−O− configuration which was originally proposed7 are shown in
maroon open pentagons for all ten osmolytes. In all cases, 1 M
osmolyte solution was taken. Local concentration is plotted as scaled
deviation between average occupancy of osmolyte on an interaction
site (hOprefi) and in the bulk (hObulki).

RSC Adv., 2024, 14, 25031–25041 | 25035
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Fig. 6 Calculated DGtr values for the backbone model as osmolyte
concentration is increased from >1 M. Available experimental data are
plotted using blue circles (sarcosine), magenta triangles (urea), and
green inverted triangles (guanidine). Solid lines represent values
calculated in this study.
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Additionally, the DGtr values were computed beyond 1 M
osmolyte (aqueous) solution. Experimental transfer free ener-
gies along with the results from the present model are plotted in
Fig. 6. Sarcosine, urea and guanidine are considered for this test
as experimental data for these osmolytes are available.47,48 We
can nd a certain degree of similarities between experimental
and computational results—this implies that our model is
exible enough to compute DGtr beyond 1 M concentration. In
order to further assess the quality of the results shown in Fig. 6,
two different standard charge parameters, CHARMM and OPLS
were chosen while varying the number of interaction sites
present in the peptide backbone. In ESI, Fig. S2† the results are
plotted. Sarcosine and urea were shown to give consistent
results for 1 M, 2 M, 4 M and 6M aqueous osmolyte solutions by
using each of the 3-site, 4-site and 5-site models, whereas
guanidine seemed to vary more at higher concentrations among
three different models. The present model is based on solute-
polarity and factional surface areas (SAs) of solvents used.
Consequently, values of fractional SAs play an important role.
Further tests are needed for better realization.

For calculating the interaction energies for the side chain
model (see Fig. 3), explicit atomic charges from the CHARMM36
Fig. 7 Computed DGtr values for peptide backbone (a single unit) utilizing
4-site and 5-site models, see ESI, Fig. S3.†

25036 | RSC Adv., 2024, 14, 25031–25041
(ref. 41) force elds were used. Charges were assigned for
a particular non-hydrogen atom of a molecule except the a-
carbon (Ca). In case of proline, nitrogen and Ca atoms are given
charges as they are fused to form a ring. Additionally, here C]O
is assigned charges to consider Pro as a whole amino acid
residue with side chain and backbone contributions. Hydroxylic
(–OH) and thiol (–SH) hydrogens (of Ser, Thr, Tyr, and Cys) were
not considered as charge sites, unless stated otherwise. The
number of charge sites is shown in Fig. 3. The presence of n
charge sites denes an n-site model. For amino acid residues
Ala, Val, and Phe, the models are 1-site, 3-site, and 6-site,
respectively. By including all combinations (eqn (1)) for these
model systems, average interaction energies were calculated
followed by transfer free energies.

TFEs using CHARMM and OPLS partial charges

The model presented here is based on SASA, and solvent
polarity. Naturally the current model is dependent on the
number of charge sites present in a solute (here, amino acids).
We have performed this test by increasing the number of
charge sites on the peptide backbone unit from three / four
/ ve. Besides CHARMM force elds we also performed this
test using OPLS42 which is widely used for amino acids. Fig. 7a
and b present results for CHARMM and OPLS force elds,
respectively. Clearly, varying the number of charge sites affects
DGtr values (for more examples, see Fig. S4–S6 in the ESI†).
TMAO, sarcosine, betaine, and proline are the least affected,
and the rest (for example, glycerol, sorbitol, sucrose, and
trehalose) among the stabilizing osmolytes are most affected
in both CHARMM and OPLS force elds. In the case of the
destabilizing osmolytes, DGtr of urea is less dependent on
number of charge sites. However, guanidine seems to show
more inuence over varying charge sites. In fact, similar
behavior in conformational energies is manifested in Fig. 4.
Overall CHARMM and OPLS have similar results irrespective of
the number of charge sites.

Osmolyte specic interactions

Calculated DGtr values of all models (Fig. 3) are plotted as
a heatmap in Fig. 8. Among the stabilizing osmolytes the model
predicts the sugars sucrose and trehalose to have the least
(a) CHARMM and (b) OPLS partial charges. For partial charges of 3-site,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Transfer free energies (DGtr) of side chain models calculated
using explicit charges, and considering all k-combinations in all ten
osmolytes. The color bar runs from red (−0.13) to blue (0.15) repre-
senting DGtr values in kcal mol−1. The red color represents better
solubility of amino acids in osmolyte than those in blue color. The size
of the square displays counting of occurrence of the value. For
example, Arg has the greatest solubility in guanidine, and the corre-
sponding DGtr value has lower distribution indicated by the smallest
red square. Arg has the lowest solubility in trehalose, and corre-
sponding DGtr value has higher distribution indicated by a large, dark
blue square.
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solubility (with +ve sign) across all amino acids. That is, amino
acids are more soluble in water than in trehalose and sucrose.
DGtr values are signicantly higher than other stabilizing
osmolytes. Therefore, we can predict sucrose and trehalose to
be better stabilizers of amino acids. Cys becomes slightly more
soluble in sarcosine than in any other stabilizing osmolytes.
Proline and sarcosine show moderate solubility of amino acids
compared to other stabilizing osmolytes, whereas TMAO and
betaine show slightly less solubility towards amino acids than
them. By looking at their consistent poor solubility throughout
all amino acids, we can infer TMAO and betaine to be more
general stabilizers for proteins. In the case of two destabilizing
osmolytes, guanidine seems to be a stronger destabilizer of
amino acids than urea.
Charged amino acids contribute predominantly to
electrostatics

Amino acid specic contributions are as follows: (1) hydrophobic
residues: Ala, Val, Leu, Ile, Phe and Pro consistently show lower
solubility in stabilizing osmolytes, and higher solubility in urea
© 2024 The Author(s). Published by the Royal Society of Chemistry
and guanidine. (2) Hydrophilic neutral residues with –O/S–H
group: Ser, Thr and Cys show the same trend as hydrophobic
residues. However,DGtr values vary within a lower range (see, light
blue squares) as compared to hydrophobic residues. (3) Hydro-
philic neutral residues, amide containing: Asn, Gln, and neutral
histidines Hsd and Hse have DGtr values varying over a slightly
wider range although the same trend of solubility in various
osmolytes persists. (4) Hydrophilic charged residues: Asp, Glu,
and Arg have the highest range of DGtr values with almost similar
distribution (similar square sizes) except for guanidine, which
shows the most favorable DGtr with least distribution/population.
Positively charged histidine Hsp is the least stable in polyols and
sugars. In contrast, all other amino acids show high stability in
sugars. (5) Amphipathic residues: Lys, Tyr, Met and Trp, like other
amino acids are the least soluble in sugars andmoderately soluble
in the rest of the osmolytes; apparently they show the same trend
of solubility, nearly like hydrophobic residues.48,49 Backbone: bb
behaves very similarly to Thr. Given its simplicity, the present
model reproduces the trend in DGtr values in all cases.

Discussion

The present model provides free energy estimates of solutes
while transferring from pure aqueous solvent to aqueous
osmolyte solutions. The peptide backbone model7 is extended
beyond three interaction sites with atomic partial charges and
a new strategy to include sub-sets of microstates to predict
transfer free energies of solutes in general. Amino acid side
chains and backbone are used as model systems. The model
predicts the general trend of the behavior of the protein–
osmolyte solutions rather well. The nature of various types of
stabilizing osmolytes, like methylamines, proline, polyols, and
sugars seem to be captured well by the model. For example,
from earlier studies we know that TMAO, sorbitol, sucrose and
trehalose fall into the category which stabilizes proteins well in
both their native and denatured states.31 Our model predicts
this trend. One exception is that amino acids are predicted to be
slightly less stable in TMAO compared to sugars. Betaine seems
to be comparable to TMAO which was reported earlier50 though
their mechanism of action was not the same. Besides, our
model shows proline and glycerol to be responsible for the
moderate change in protein stability as reported earlier.31 Sar-
cosine is the milder one to modulate protein stability amongst
the stabilizing osmolytes. Denaturing osmolytes are well pre-
dicted by our model. In order to reproduce the experimental
transfer free energy data as closely as possible, several groups
have performed extensive MD simulations,17,50,51 and developed
new models52–55 for amino acids as well as for a whole protein.
Recently, the interaction between RNase A protein and sorbitol/
sucrose was studied56 using a model which is based on MD
simulations’ data that are able to describe preferential exclu-
sion of sorbitol/sucrose from protein better than using standard
CHARMM36 (ref. 57) and KBP58 force elds for sorbitol and
sucrose. That model provides a better estimation of preferential
exclusion parameters for both high (1.0 M) and low (0.5 M)
concentrations of co-solutes. Here, the current model shows
that free energy changes due to folding/unfolding of a protein is
RSC Adv., 2024, 14, 25031–25041 | 25037
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Fig. 9 Transfer free energies (DGtr) of aliphatic C and cationic N
groups of Arg. They are calculated using explicit charges, and
considering all k-combinations in all ten osmolytes.
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linearly dependent on osmolyte concentration for both the
stabilizing and destabilizing osmolytes. In fact this was earlier
predicted by the parent backbone model,7 and here, we show
this with a more general model. The present model correctly
predicts the m values (the change in transfer free energies w.r.t.
the change in osmolyte concentration), implying proteins will
be forced to fold in the presence of TMAO at lower concentra-
tions whereas they will unfold in the presence of urea at rela-
tively higher concentrations.

Diehl et al. recently reported a-value and group transfer free
energy (GTFE) predictions using vapor pressure osmometry
(VPO) data of functional groups of proteins and solubility data of
amino acids and dipeptides for osmolyte glycine betaine, proline
and urea. These two methods yielded signicantly different
predictions. On the one hand, the GTFE analysis needed further
scrutiny as it used glycine as a reference to obtain side chain
contributions. On the other hand, a-value analysis used more
extensive data sets.59 Finally, we note that Diehl et al. compared
their VPO results with those from solubility data. While many
amino acids preferred to interact with betaine instead of water as
concluded by both two techniques, they also showed some
differences. For example, solubility-data estimates showed
a weak preference of valine and leucine for betaine (and proline)
compared to water while VPO-data estimates showed a weak
preference of valine and leucine for water than for betaine.59 In
an earlier study by Auton and Bolen,53 valine and leucine were
shown to have weak favorable interactions for water too. Addi-
tionally GTFE experiments found sodium salts of glutamate and
aspartate to interact highly favorably with betaine while VPO
results indicate the largest unfavorable interaction with
betaine.59 Another study showed a pH dependent preference of
folate (vitamin B9) with betaine using solubility and VPO exper-
iments.60 At pH 7, solubility-data estimates found folate to
interact with both water and betaine with a TFE of about 0.089 ±

0.03 kcal mol−1.60 Specically, Bhojane et al. reported that the
glutamate tail of folate prefers to interact with water, while the
aromatic rings of folate prefer betaine. The ambiguity toward
predicting the right protein stability in osmolyte was not
explored further. One of the reasons is the scarcity of data for
a range of stabilizing to destabilizing osmolytes.
Fig. 10 Wordcloud representation of stabilities of side chainmodels in
all ten osmolytes. In each sub-set, the larger the size of the word the
higher the DGtr value.
Atomic type contribution differs in various solvent
environments: a case study of Arg

The present model predicts the overall trend of both stabilizing
and destabilizing osmolytes satisfactorily well. However it fails in
the cases of aromatic and charged cationic side chains. In case of
aromatic residues the model predicts positive DGtr values (about
0.13 kcal mol−1) contradictory to the original TFE model of Liu
and Bolen.48 The maximum discrepancy is seen in the case of
Arg; here DGtr is 0.15 kcal mol−1. Therefore, Arg was chosen for
further analysis. The charge surface of Arg is divided into
aliphatic C and cationic N groups as Diehl et al. suggested
recently.59 Further, their contributions towards DGtr were
computed individually. It was found that for polyols, sugars and
even for urea, the aliphatic C group’s DGtr values are negative
(Fig. 9). However, the cationic N groups’ DGtr values are positive
25038 | RSC Adv., 2024, 14, 25031–25041
and larger in magnitude. As a result, net DGtr values are positive.
Considering the simplicity of the present model it is apparent
that the magnitude of the net DGtr value reported currently
agrees with the original transfer free energy data. The present
model might predict better TFE values for aromatic and charged
cationic residues if the number of charge sites and charge values
are optimized. This can be further explored in future studies.

Many earlier models used SASA to compute solvation free
energies, and were able to predict DGtr values satisfactorily.52,61
© 2024 The Author(s). Published by the Royal Society of Chemistry
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However, none considered the polar fraction of osmolytes’
surface areas, interaction degeneracies (between solute and
solvent) and microenvironment polarity in a unied model for
predicting transfer free energies of a solute in the presence of
a cosolvent. Fig. 10 presents a comprehensive view of the
outcomes of our present model. This gure shows a compara-
tive stability of various side chain models in protecting osmo-
lytes. For example, Asn, Gln, Asp, Glu, Arg and Pro are highly
stable in most of the protecting osmolytes; Ala, Val, Ile, Leu,
Thr, Met, Lys, Phe, Trp and Tyr showmoderate stability; Ser, Cys
and histidine show poor stability. However, in denaturing
solvents no such clear distinction can be made between side
chain models as most of them show similar stabilities in urea
and guanidine. Our model uses statistical mechanics to predict
solvation thermodynamics, and is essentially parameter-free,
and while consistent with electrostatic considerations is ex-
ible about n-site choices. The proposed model is devoid of any
rigorous conventional force eld based molecular simulations.
Considering its mathematical simplicity, and usage of model
systems’ electrostatics primarily, the current model predicts
satisfactory transfer free energies of amino acids/peptides from
pure aqueous to aqueous osmolyte solutions for a range of
stabilizing to destabilizing osmolytes.

Conclusions

Solvent effects play the primary role in modulating protein
stability. Peptide backbone and side chains are known to
contribute diversely to this stability. However their mecha-
nisms of action are yet to be fully understood/described by
means of a generic theoretical model. In this study, solvent
induced protein stability was quantied at the molecular level
in terms of the interactions between various osmolytes
(ranging from the stabilizing to destabilizing) and model
amino acid side chains and the backbone. In particular, we
presented transfer free energies of model compounds from
water to osmolyte. The average energy of each model in various
osmolyte solutions was calculated using statistical mechanics,
where the number of interaction sites of a model is the number
of heavy atoms present. Force eld assigned charges were
considered for determining the interaction energies, while
solvent polarity and fractional solvent accessible surface areas
were used to estimate the binding-efficiency fraction between
solvent and solute interaction. The model presented in this
work predicts the correct trend of osmolyte’s behavior in
a parameter-insensitive fashion. The current model has the
potential to be developed further by including the optimized
number of charge sites and charge values. Hence, we believe
that the model can be of general use for estimating solute–
solvent interaction energies of biomolecules in solvent envi-
ronments which is of great interest in drug discovery and
therapeutics.
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