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Determination of the dispersion forces in the gas
phase structures of ionic liquids using exclusively
thermodynamic methods
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Dzmitry H. Zaitsau, (2 °° Ralf Ludwig (2 **°° and Sergey P. Verevkin
lonic liquids are described by a delicate balance of Coulomb interaction, hydrogen bonding and dispersion
forces. Dissecting the different types of interactions from thermodynamic properties is still a challenge.
Here, we show that comparison of vaporization enthalpies of tetra-alkyl-ammonium ionic liquids with
bis(trifluoromethylsulfonyllimide [NTf,]™ anions and the related molecular liquids, trialkylamines, allows for
determining dispersion interactions in the gas phase ion-pairs. For this purpose, we measured vapor
pressures and vaporization enthalpies of these ionic and molecular liquids by using a quartz-crystal
microbalance. For supporting these data, we determined the vaporization enthalpies additionally from
experimental activity coefficients at infinite dilution. Characteristic alkyl chain length dependences of the
vaporization enthalpies have been established and were used for quantifying the dispersion forces in the
gas phase species. The dissected dispersion contributions suggest that the alkyl chains do not show star-
like topologies but embrace the anion maximizing the dispersion interactions. For the longest alkyl chains
with eight carbon atoms, the dispersion interaction is as strong as two and a half hydrogen bonds. The
proportion of dispersion in the gas phase species depending on the number of methylene groups in the
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1. Introduction

Ionic liquids (ILs) bearing the tetra-alkyl-ammonium cation
belong to the most common class of neoteric solvents. These
ILs are air and water stable, and are easy to prepare from cheap
amines." However, tetraalkylammonium based ILs have been
less studied in comparison with ionic liquids based on the
1-alkyl-3-methylimidazolium cation.” Experimental and theore-
tical investigations of structure-(thermodynamic) property rela-
tionships for imidazolium and ammonium based ionic liquids
in combination with conventional thermodynamic methods®”
as well as with help of the spectroscopic far-infrared measure-
ments®® are some of the longstanding goals of our laboratory.
In the focus of this work is an extended thermochemical study
of vapor pressures and vaporization enthalpies of tetraalkylam-
monium based ILs (see Fig. 1).
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ammonium cations is strongly supported by quantum chemical calculations.

The textbook axiom that “function follows structure” is one
of the most fundamental in science and technology. It is well
established, especially in chemistry, that the properties and
performance of a molecule follow from its structure. Whilst it is
apparent that the structure of a molecule should contain the
features responsible for its physical-chemical, thermodynamic,
etc. properties, it is less obvious that these features can be
discerned in any simple way.

The simplest manifestation of the structure-property relation-
ships is the boiling temperatures’ chain-length dependence in the
homologous series of rn-alkanes. Consequently, the standard
molar vaporization enthalpies, AT H?,(298.15 K), of n-alkanes mono-
tonically grow with the increasing chain-length (see Fig. 2a). Such a
behavior is common with molecular compounds. And what about
ionic compounds? Surprisingly, not so long ago there was a lot of
controversy over this question.'® However, it is already known today
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Fig. 1 Structures of cations and anions used in the present investigation:
tetra-alkyl-ammonium cation based ILs (left) and the bis|(trifluoromethyl)-
sulfonyllimide = [NTf,]™ anion (right).
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Fig. 2 Vaporization enthalpies’ at 298 K (in kJ mol™) chain-length
dependences of molecular and ionic compounds: (a) alkanes (opened
diamonds, ¢),**** alkyl-imidazoles (opened triangles, A)* and 1-methyl-
3-alkyl-imidazolium based ILs (opened circles, 0);'° (b) trialkylamines®®
(opened squares, ) and tetraalkylammonium based ILs from this work
(solid squares, W).

that the vaporization enthalpies of aprotic ionic liquids also have
the linear chain length dependencies (with the exception of a few
special cases caused by a possible nanostructuring of ILs with long
alkyl chains bounded to the cation).'”"" An example of such an
impeccable linear dependence for 1-methyl-3-alkyl-imidazolium
based ILs with the [NTf,] anion is shown in Fig. 2a.

Coming back to the structure-property behavior of the
tetraalkylammonium based ILs studied in this work, we also
observe (see Fig. 2b) the already anticipated straight line as a
function of the chain lengths of the enthalpy of vaporization.
From this viewpoint, we should consider the results as expected
and less spectacular. However, in comparison with similarly
shaped ionic and molecular species and their homologous
series, this observation becomes interesting. For example, for
the ionic series of 1-methyl-3-alkyl-imidazolium based ILs, the
similarly shaped molecular homologous series is the series of
n-alkylimidazoles (see Fig. 2a).

What is interesting about the comparison of the enthalpies
of vaporization in these two series? In Fig. 3, we show the
differences between A$ H;,(298.15 K)-values for these ionic and
the corresponding molecular compounds. As can be seen in
Fig. 3, nothing surprising can be observed for the pairs 1-methyl-
3-alkyl-imidazolium based ILs and alkyl-imidazoles, namely the
differences between A{ Hy (298.15 K)-values are decreasing insig-
nificantly with the elongation of the alkyl chain. This decrease
could be understood from the competition between the corres-
ponding van der Waals and Coulomb interactions.'® Indeed,
according to Kdddermann et al.,"® the Coulomb energy contribu-
tion remains unchanged as the length of the alkyl chains increases
beyond 7 = 2. Consistent with the findings of Kéddermann et al.,'®
we also found experimentally that the increase in the enthalpy of
vaporization for the [C,,mim][NTf,] series with increasing chain
length arises completely from van der Waals interactions, which
are the dominant driving force of the vaporization process.'’

This journal is © the Owner Societies 2021

View Article Online

PCCP

N

o

o
T

0 10 20 30 40
N, carbon atoms in all side chains

Fig. 3 Differences (in kJ mol™) between the ASHZ,(298.15 K)-values for

m

the ionic and molecular compounds. 1-Methyl-3-alkyl-imidazolium based
ILs'® and alkyl-imidazoles'* (opened triangles, A); tetraalkylammonium
based ILs from this work and trialkylamines®® (solid squares, H).

The finding that the A{H,(298.15 K)-differences between pairs
1-methyl-3-alkyl-imidazolium based ILs and alkyl-imidazoles are
hardly chain-length dependent can be seen as evidence that the
van der Waals interactions in the ionic and molecular series are
very similar even quantitatively. With this in mind, we now study
the tetraalkylammonium based ILs (see Fig. 3), which are in the
focus of the present work.

In Fig. 3, we also show the differences between A{ H;, (298.15 K)-
values of tetraalkylammonium based ionic liquids and the corres-
ponding molecular tri-alkylamines. As can be seen in Fig. 3, the
spectacular decrease of the A{H}, (298.15 K)-differences is observed
for these pairs with the growing of the alkyl chain. What about the
competition between the van der Waals and Coulomb interactions
in these tetraalkylammonium-based ILs? We will address this
question in the following way. First, we measure the vapor pres-
sures and determine the molar enthalpies of vaporization by using
the Quartz Crystal Microbalance (QCM) method. For consistency,
we also “indirectly” determined the vaporization enthalpies with
the complementary Gas Chromatography (GC) method based on
measuring activity coefficients at infinite dilution of volatile solutes
in these ILs. The obtained vaporization enthalpies were then
related to experimental surface tensions from the literature for
checking the reliability of property-property relations. Thus, we
were well prepared to dissect and quantify the dispersion interac-
tions in these ILs, in particular for the gas phase species. Finally,
the dispersion contributions were confirmed using density func-
tional theory FT) calculations showing a linear correlation between
the calculated and the dissected measured dispersion interactions.
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Overall, we show how valuable thermodynamics methods are for
better understanding non-covalent interactions, here in ammonium-
based ionic liquids.

2. Experimental section
2.1 Materials

All samples of the [N(R),][NTY,] ionic liquids were of commercial
origin with >99% purity. Prior to vaporization experiments, samples
were subjected to vacuum evaporation at 333 K and 10> mbar for
more than 24 h to reduce possible traces of solvents and moisture.
Samples used in vaporization studies were additionally conditioned
inside of the vacuum chamber at the highest temperature of experi-
ments (see in Table S1 (ESIT) with the primary results of vaporization
experiments) within 12 h. This additional purification allowed for
removing residual traces of volatile impurities, as well as for
collecting the amount of the vaporized IL required for the FTIR
analysis.

2.2 Quartz crystal microbalance (QCM)

Vapor pressures and molar enthalpies of vaporization of the
[N(R),4][NTf,] samples were determined using the QCM method
(details were described elsewhere'”). The experiment is based
on the Langmuir evaporation of an IL sample from the open
surface. The sample was placed in an open cavity inside of the
thermostatted block and exposed to vacuum (10~° Pa). The QCM-
sensor is mounted directly above the IL surface. After a series of
isothermal steps, a certain amount of sample is evaporated into a
high vacuum and condensed on the quartz crystal surface. The
change of the vibrational frequency Af of the quartz crystal is
recorded and converted to the absolute vapor pressures after
calibration.® More details are given in the ESLf The primary
experimental results are summarized in Table S1 (ESIt). No sign of
decomposition processes of the IL under the given experimental
conditions was observed as was proven by using ATR-IR spectro-
scopy. The residual amount of IL in the cavity, as well as the
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IL-deposit on QCM were then analyzed by ATR-IR spectroscopy.
No changes in the spectra were detected as can be seen in
Fig. S2-S7 (ESIt).

3. Results and discussion
3.1. Vaporization enthalpies at 298.15 K

3.1.1 Experimental vaporization enthalpies at 298.15 K from
the QCM studies. The standard molar enthalpies of vaporization
at average temperature Ty, for the ILs under investigation are
presented in Table 1. In order to understand the structure-
property relations in these ILs, the enthalpies of vaporization
A$ H; (T,y) have to be adjusted to the reference temperature T =
298.15 K. The adjustment was performed according to the
Kirchhoff’s Law (see Table 1, column 7). Details are given in the
ESLt

A careful search in the literature has revealed that experimental
studies of vaporization enthalpy for tetra-alkyl-ammonium based
ILs with the [NTf,] anion are absent in the literature. The only value
available for comparison is that ASHp (298.15 K), [N, g55][NTf,] =
191.1 k] mol ™" calculated using COSMO-RS"® was in very good
agreement with the experimental value A{H;(298.15 K),
[Nygss][NTf,] = 191.8 £ 6.0 kJ mol ™" (see Table 1) measured in
this work. It should also be mentioned that the relatively high
uncertainty of our experimental value (of + 6.0 k] mol ') is due
to the procedure used for the adjustment of vaporization
enthalpy to the reference temperature 7 = 298.15 K.

3.1.2 Vaporization enthalpies at 298.15 K from solution
thermodynamics. The total absence of vaporization studies of
the ammonium based ionic liquids has prompted an “indirect”
determination of vaporization enthalpies for this series with
the help of an independent and complementary gas chromato-
graphy (GC) method.?>?! The latter method is based on the
experimental activity coefficient of infinite dilution y{® of
volatile solutes (typically alkanes and alkanols denoted with a

Table 1 Standard molar enthalpies of vaporization, A]Hy,, of tetra-alkyl-ammonium ILs with the common anion [NTf,] derived from the QCM method

Cation NS  TRange/K ToWK  AJH(Tn)KImol™  C3 (D’JK 'mol™  A{Cs WK 'mol™  A{HZ(298.15 K)*/k] mol™
1 2 3 4 5 6 7 8

[N1123 7 385-432 4082 1324+ 1.0 549 74 140.5 £ 1.9
[N1114 7 383-433 408.4  135.5+ 1.0 549 74 143.7 £ 1.9
[N1115 8 386-443 413.7 1361+ 1.0 582 83 145.7 £ 2.2
[N1224 9 383-430 405.0  137.7 £ 1.0 614 91 147.4 + 2.2
[N2225 11 385-433 4089 1381+ 1.0 679 108 150.1 £ 2.6
[N1444 13 378-420 4002 1393 + 1.0 744 125 152.1 £ 2.7
[N2228 14 390-438 413.7 1414+ 1.0 776 133 156.8 £ 3.2
[N2666 20 386-433 409.7 1522+ 1.0 971 184 172.7 £ 4.2
[N6666 24 383-425 405.6  159.0 + 1.1 1101 218 182.4 + 4.8
[N1888 25 405-453 4282  162.4 + 1.0 1133 226 191.8 £ 6.0

“ N is the total number of C atoms in all alkyl chains attached to the central nitrogen atom. ° Estimated values (see the text). ¢ Calculated with C3 _(/)-values

p,m

given in column 6 of this table according to the equation developed'® for the imidazolium based ILs: A{CS . = C2 . (/) x (—0.26 £ 0.05) + (68.7 & 37.0).

p.m p.m

“ Adjusted to 298.15 K using AS Cpmvalues from column 7. The final uncertainties of vaporization enthalpies adjusted to the reference temperature
T = 298.15 K are expressed as expanded uncertainties U (ASHy,) at the 0.95 level of confidence with k = 2. These uncertainties combine the experimental
uncertainty and the uncertainty of the temperature adjustment. The uncertainty of the heat capacity difference A{C;, , is assumed to be of + 20 ] K 'mol
Values given in bold are recommended for the thermochemical calculations.
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Table 2 Comparison of standard molar enthalpies of vaporization,
A$H;,(298.15 K), of tetra-alkyl-ammonium ILs with the common anion
[NTf,] derived from the QCM method at 298.15 K (in kJ mol™?)

Source of
Cation N ASH® (exp)” ASH (GCY* 77°-values
[N1114] 7 143.7 £1.9 134.0 £ 5.2 3
[N1116] 9 146.1 £+ 4.0 143.7 £ 4.2 22
[N1118] 11 151.2 £ 4.0 151.0 £ 3.7 23
[N111,10] 13 156.3 £ 4.0 158.3 £+ 3.8 23
[N1444] 13 152.1 + 2.7 157.7 + 5.1 23
[N2228] 14 156.8 £ 3.2 157.0 £ 4.4 24
[N1888] 25 192 + 6 208 £ 8 25
[N888s8] 32 205 £ 6 212 +8 23

% N is the total number of C atom all alkyl chains attached to the central
nitrogen atom. ” From Table 1. Values in italic have been derived from the
chain length dependence: A Hg,(298.15 K) = 2.545 x N, +123.2 (R = 0.976),
derived from experimental vaporization enthalpies given in Table 1. ¢ Esti-
mated using y;°-values (see the text)

subscript (1) in an ionic liquid ([NR4][NTf,] in this work,
denoted with a subscript (2) available in the literature).>>**
The 7p{°-values are generally related to the total solubility
parameters J, for solutes and o, for the IL (details are given
in the ESIT). The total solubility parameter (d;) at a temperature
T is further related to the vaporization enthalpy via the follow-
ing equation:***’

7 = [(ASHG — RT)/Vin]™, 1)

where AYH? is the standard molar enthalpy of vaporization
(of the solute or the solvent), R is the ideal gas constant, T is the
temperature, and V,, is the molar volume (of the solute or the
solvent). A simple re-arrangement of eqn (1) towards the total
solubility parameter J, opens an independent method to derive
vaporization enthalpy, A$H?, (298.15 K), of an IL using eqn (2):

ASH (T) = [522 X Vm + RT], (2)

where all values, including V;,, are referenced to an arbitrary
temperature T, which is 298.15 K in this work. We used experi-
mental y;°-values for different solutes (see Tables S2-S9, ESIt) in
[NR,][NTf,] available in the literature®**> to obtain J,-values (see
details in the ESI}). The values A$H;,(298.15 K) were calculated
from ¢, (see Table S10, ESIt). The results are in agreement within
the experimental uncertainties of the QCM results (see Table 2).
Such a good agreement provides more confidence to the QCM
results on A{H; (298.15 K) and allows for a meaningful inter-

pretation of these results at the molecular level.

3.2 Structure-property and property-property correlations of
vaporization enthalpies

3.2.1 Chainlength dependence. Correlation of A H,, (298.15 K)-
values with the number of C-atoms in the alkyl chain within the
homologues series of molecular and ionic compounds is a
valuable tool to study structure-property relationships. For
instance, for the series [C,,mim|[NTf,], the dependence of vapori-
zation enthalpy on the number of C-atoms, n, in the alkyl chain

This journal is © the Owner Societies 2021
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(with n = 2-18) attached to the 3 position of the 1-methyimidazolium
cation follows the linear equation:"

ASH? (298.15 K) /kJ mol ! =115.7 + 3.89 x N

3
(with R* = 0.995) ¥

We also correlated the AfH,(298.15 K)-values for [N(R),][NTK,]
ionic liquids evaluated in Table 1 with the total number of C atoms,
N,, in all alkyl chains attached to the central nitrogen atom:

ASH? (298.15 K) /kJ mol ™! =123.2 4 2.545 x N¢
(4)
(with R* = 0.976)

The high correlation coefficient R is an evidence of a good
consistency of experimental data approximated using eqn (4).
However, it is obvious from comparison of eqn (3) and (4) that
slopes of the considered linear dependencies are significantly
different. The slope of the vaporization enthalpy chain-length
dependence generally represents the ‘“additive” contribution of
the CH,-group to the vaporization enthalpy A{H; (298.15 K).
In our previous studies of vaporization thermodynamics of
different ionic liquids (based on imidazolium, pyridinium,
and pyrrolidinium cations),’®"**7% we have observed that
variations in the CH,-group contribution of around 4 kJ mol " are
not pronounced and they are mostly independent of the structure of
the cation and anion. Hence, the slope of 2.545 k] mol * observed
for the [N(R),]NTf,] series seems to be exceptional and has to be
understood while excluding possible systematic errors. However,
additional proof of the consistency of the experimental data is now
required to exclude a possible systematic error.

3.2.2 Correlation of vaporization enthalpies with the surface
tension. Correlation of A{H{ (298.15 K)-values with the surface
tension within the homologues series of molecular and ionic
compounds is the additional tool to establish internal consis-
tency of the experimental data. For example, a proper linear
vaporization enthalpy chain-length dependence was observed
for the [C,mim][B(CN),] series.’® In this work, we correlated
A§H; (298.15 K) for the series [NR,][NTf,] with the experimental
values of surface tension o,9g at the reference temperature
available for these ILs from the literature (see Table 3). It has
turned out that also the linear dependence:

ATH? (298.15 K) /kJ mol ™! =393.2 + 6.98 x a205
(with R* = 0.979)

has been observed within the [NR,][NTf,] series with the total
C-numbers N, = 6-25.

Having additionally established the internal consistency of
the A{H;,(298.15 K)-values for the [NR,][NTf,] series, they can
be now applied for the interpretation of the intensity of inter-
molecular interactions in the ammonium based ionic liquids.

3.3 How to quantify the dispersion forces in ILs
experimentally?

The A$H;,(298.15 K)-values obtained for the [NR,][NTf,] series
reflect the overall bulk intensity of all the liquid phase

Phys. Chem. Chem. Phys., 2021, 23, 7398-7406 | 7401
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Table 3 Experimental values of surface tension gx9g(exp) for the [NR4I[NTf,] series available in the literature and correlation of vaporization enthalpies

A$H;,(298.15 K) with the surface tension

Cation N.  0a9g(exp)/mN m~ Ref.  gyos(est)ymN m > ASH (298.15 K’/ mol *  ASH,(298.15° K)eg/k] mol ™ A%/k] mol ™
1 2 3 4 5 6 7 8
[N1113] 6 358 32 36.6 138.5 137.8 0.7
[N1114] 7 32.5 33 36.2 143.7 140.4 3.3
33.2 34
38.1 35
[N1123] 7 (46.6) 36 36.2 140.5 140.4 0.1
[N1134] 9 38.4 35 35.4 146.1 145.8 0.3
[N1116] 9 36.0 35 35.4 146.1 145.8 0.3
[N1136] 11 36.9 35 34.7 151.2 151.2 0.0
[N2225] 11 35.7 37 34.7 150.1 151.2 —-1.1
[N2226] 12 34.1 37 34.3 153.7 153.8 —-0.1
35.2 35
[N1444] 13 306 34 339 152.1 156.5 —4.4
[N111,10] 13 35.5 35 33.9 156.3 156.5 —0.2
[N2228] 14 33.1 37 33.5 156.8 159.2 —2.4
[N113,10] 15 36.1 35 33.1 161.4 161.9 —0.5
[NZZZ,lO] 16 324 163.9 164.6 —-0.7
[N222,12] 18 31.8 37 32.0 169.0 169.9 —-0.9
[N1888] 25 27.9 33 29.3 191.8 188.7 3.1
29.3 35
(22.8) 38
¢ Estimated from the chain length dependence: 6,05(est) = —0.383 x N, + 38.9 derived from g,9g(exp) listed in column 3, this table. Values in

brackets were not taken into correlation. * From Table 1. Values in italics has been derived from the chain length dependence: A{H;,(298.15 K) =
2.545 x N, +123.2 (R* = 0.976), derived from experimental vaporization enthalpies given in Table 1. ¢ Estimated from the equation: A{ H?, (298.15 K) =

—6.98 X 0,95(est) + 393.2 (R* = 0.981) ? Difference between columns 6 and 7.

interactions, and they are related to the quantitative amount of
energetics of the disrupted inter-molecular interactions (Coulomb
and dispersion forces), provided that the isolated from the liquid
phase individual ionic pair does not bear any dispersion interac-
tions occurring in the gas phase. We recently showed that for ILs
with “hairy” cations such as tetraalkylammonium, the dispersion
interactions of alkyl chains in the gas phase contribute signifi-
cantly to the energetics of evaporation.” It has also been shown
that even with long-chain alkanes, the weak dispersion interac-
tions between chain segments are responsible for the stability of
very unusual conformers such as hairpins.” The tetraalkylammo-
nium ILs with the long alkyl chains investigated in this work are
qualitatively predestined for intensive dispersion interactions
between the chain segments. The dissection of the overall inter-
action energies and the quantification of the dispersion interaction
are a special challenge for the polar ionic liquid systems, which are
characterized by a subtle balance between Coulomb interactions
and dispersion forces.” However, we have found that the enthalpy
of vaporization can be a suitable tool for quantifying the dispersion
forces.”

A “step by step” protocol based on the experimental vapori-
zation enthalpies (see Table 1) was used to quantify dispersion
interactions in the 1,3-dialkylimidazoliu based ILs. This
approach was originally developed and tested for the tetra-
alkylphosphonium-based ILs with [PFe] and [NTf,] anions.*
The experimental A{H;,(298.15 K)-values of n-alkanes CHj-
(CH,),~CH;">"* were also included in the interpretation. The
results of the calculations carried out using the ‘“step by step”

7402 | Phys. Chem. Chem. Phys., 2021, 23, 7398-7406

protocol are summarized in Table 4 and shown graphically in
Fig. 5 and 6. The idea of the first step is simply to cut off the
alkyl chains attached to the cation as they are the main cause of
the dispersion interactions. The “bald” cation produced in this
way can be used as a reference for quantifying the dispersion
forces. In order to execute this idea, linear vaporization
enthalpy chain-length dependences of a general formula:

ASH (298.15K) /kI mol™! = Y + Q x (N¢) (6)

is developed for the IL homologous series (in this work, it is
eqn (1) for [NR4][NTf,]), as well as for n-alkanes for the sake of
comparison (details are given in Tables S11-S15, ESIt). The
extrapolation of these lines represents an imaginary case with
the N, = 0 (no alkyl chain at all). The graphical interpretation of
this step for ILs for n-alkanes is given in Fig. 5a.

Table 4 Quantification of dispersion forces for tetra-alkylammonium-
based ILs with the [NTf,] anion (in kJ mol™)

Compound Y ASH? ((CH,)y) —Eqisp((CH,),.gas)
N1123 116.4 24.2 10.9
N1114 27.3 7.8
N1115 29.3 10.8
N1224 31.0 14.1
N2225 33.6 21.5
N1444 35.6 29.6
N2228 40.3 30.0
N2666 56.3 44.0
N6666 66.0 54.4
N1888 75.4 49.9

This journal is © the Owner Societies 2021
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Fig. 4 lllustration of the long-chained tetra-alkylammonium based IL
[N1gggl[NTf2] with the structurally predestinated dispersion interactions
between the chain segments.
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Fig. 5 (a) The chain length dependence of the vaporization enthalpies for
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vaporization enthalpies.
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In both series taken for comparison, the intercept Y of the
linear fit (see Table 4) refers to the “residual” vaporization
enthalpy, that is imaginatively released from dispersion inter-
actions by alkyl chains. From a physical point of view, the
quantity of the intercept Y is very different for the molecular
and ionic compounds examined. Q describes the slope with
increasing number of carbons N. and is not of relevance at
this point.

In the case of ionic liquids [NR,][NTf,] (Y = 116.4 k] mol "),
the intercept represents the vaporization enthalpy of a hypothe-
tical “armless” [NH,][NTf,] ionic liquid. This value encompasses
not only the contribution to vaporization enthalpy from the
isolated “ammonium” cation, but also the overall amount of
Coulomb interactions presented in the liquid phase. It is not to
be overlooked that the corresponding intercept Y for [NR,][NTf,]
series studied in this work is indistinguishable from those (Y =
116.0 kJ mol ") for tetraalkylphosphonium-based ILS [P,; ;1 ][NTF]
reported in our paper,® recently (see details in the ESIf). This
observation shows that the Y intercept can be further used as a
measure of Coulomb interactions between ion pairs in the
liquid state.

For the n-alkanes CH;~(CH,),~CHj, the intercept Y= 1.5 kJ mol "
was derived from the chain-length dependence of experimental
vaporization enthalpies. This term can be perhaps attributed to
the contribution of the terminal CH;-fragments. As a rule, the
inaccuracy of the experimental data for n-alkanes is mostly below
than 1 k] mol™* and for this reason it is reasonable to consider
the intercept ¥ = 1.5 k] mol~ " as an empirical factor that is not
negligible for further calculations.

After we have determined the contribution Y to vaporization
enthalpies of ammonium-based ILs [NR,][NTf,] by completely
cutting off the alkyl chains from the real molecules, we are now
ready for the second step of quantifying the dispersion forces
due to the multitude of van der Waals interactions of alkyl
chain segments. It seems obvious that according to eqn (7):

AYH;, ((CHy),) = AYH; (exp) — Y. 7)

the subtractions of the individual contribution Y (specific but
quantified above for each series) from the real experimental
vaporization enthalpies, A{H;,(exp), bring the desired total
measure of the dispersion forces, A H; ((CH,),), as expressed
in terms of enthalpy of vaporization. The latter values (see
Fig. 5b) could immediately be ascribed to the intensity of
dispersive alkyl chains interactions in the liquid phase if the
dispersive forces in the gas phase are completely absent.
However, this speculation does not appear to be correct for
all the series examined in this work. If the dispersion forces are
only present in the liquid phase, the chain length dependency
shown in Fig. 5b for the molecular and ionic series should more
or less merge with one another, in particular due to sufficiently
long tails. Fig. 5b shows, however, that if the A{Hg ((CH,),)-
values for the series of molecules are only slightly different, the
deviations for the ionic series are already noticeable. It seems to
be that the reason is that the n-alkanes have typical linear zig-
zag structures in the gas phase, in which an occasional raveling
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of the chain due to dispersion forces is possible but not
favorable.'®*? Therefore, in n-alkanes, the amount of disper-
sion forces drawn into the gas phase could be viewed as small,
and the A{H_, ((CH,),)-values are only responsible for this series
of dispersion interactions in the liquid phase. The line in
Fig. 5b developed for the ammonium based ILs is significantly
below the line shown for n-alkanes. This observation is clear
evidence that the remaining dispersive interactions between
alkyl chains dragged from the liquid phase into the gas phase
are of particular importance for the ionic compounds.

In order to determine this amount of dispersion forces, we
finally propose the third step to calculate the interactions between
alkyl chains Egjs,((CH,),gas)in the gas phase through space:

Egigy ((CH,), gas) = AT Hy, ((CH,),, inILs)

o , ®)
— Ale ((CHz)n m CnH2n+2)-

The evaluated values are given in Fig. 6. It is apparent from
this figure that the tetra-substituted ammonium ions take a
large amount of energy (up to 55 k] mol ') of dispersive
interactions between the chains and the anion in the gas phase.
First of all, this fact can explain the generally lower vaporiza-
tion enthalpies of tetraalkylammonium based ILs [NR,][NTf;]
compared to imidazolium-based ILs with the identical number
of C-atoms in the alkyl chains. For example, the value
A$HS,(298.15 K) = 152.1 £ 2.7 k] mol " measured in this work
for [N1444][NTf,] (see Table 1) is significantly lower in comparison
to those A{H?(298.15 K) = 162.2 + 3.5 k] mol " derived for
[C1,mim][NTf,] (the averaged result from ref. 43 and 44). Second,
the gas phase dispersive interactions of alkyl chains for
ammonium-based ILs with the [NTf,]” anion (see Fig. 6) are
the key for the understanding of the phenomena questioned in
the introduction (see Fig. 3).

The dramatically decreasing differences between A H, (298.15 K)-
values of tetraalkylammonium based ionic liquids and the corres-
ponding molecular tri-alkylamines are obviously the consequence
of a systematic accumulation of the gas-phase dispersion interac-
tions at the tetraalkylammonium cation with increasing chain
length. These dispersion interactions are not so pronounced in
the tri-alkylamines, that is why the A{H; (298.15 K)-differences
indicate the amount of dispersion forces disrupted in the liquid
phase along the vaporisation, but taken into storage in the
gaseous phase. This finding is crucial for the general reconsidera-
tion of the IL’s vaporization thermodynamics, since the vaporizing
molecules can no longer be regarded as a “star-shaped” confor-
mation with the non-interacting tails (see Fig. 4a). Instead, the
tetraalkyl substituted ammonium and phosphonium ILs have to
be considered as entangled hairy balls (see Fig. 4b) with the
significant dispersion interactions between the chain segments,
as well as dispersion interactions of the long alkyl chains with
the anion.

3.4 DFT approach to quantify the gas phase dispersion forces
in ILs?

The contribution of the dispersion interaction in the stability of
ammonium-based ionic liquids was evaluated as the difference
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in total energy of the molecules optimized at the B3LYP/cc-tzvp
level of theory*>*® with and without the D3 dispersion correction
from Grimme*” with Becky Johnson damping.*® The geometry
optimization was carried out with the Gaussian16 package.

The main challenging task in the theoretical study of molecular
or ionic compounds with long side alkyl chains is to correctly
establish the conformational ensemble. In the presented study, we
applied the Conformer Rotamer Ensemble Sampling Tool (CREST)
reported by Grimme*® utilizing the GFN2-xtb method*"" for tight
optimization of the found conformers and evaluation of relative
total energy. The complete evaluation of the dispersive energy
for the whole ensemble of conformers is time and resource
consuming. Therefore, the energies obtained using the GFN2-
xtb method were used for the evaluation of the enthalpy
correction of the conformational ensemble at 298.15 K. The
closest by the corrected energy conformer was chosen as
representative for evaluation of the dispersive contribution.
The full description of the procedure is given in the ESI.{ The
results of dispersion energy evaluation given in Table 5 were
evaluated as follows:

Egisp(g3)qc = Erot(B3LYP/cc — pvtz(D3BJ))
— Eot(B3LYP/cc — pvtz) 9)

Eaisp((CHz)gas)qc = Eaisp([NR4][NTH,]gas)
— Eaqisp([NH4][NTf,]gas) (10)

where Eg;sp(gas) corresponds to the gas phase dispersion forces
in the studied ionic liquids and Eg;sp((CH,)gas) corresponds to
the gas phase dispersion contribution of CH, groups in the
studied ionic liquids.

Apparently, the direct comparison of QC-evaluated and
experimental dispersion forces is not relevant. The experi-
mental values were calculated with alkanes as reference com-
pounds and the corresponding along the chain dispersion
contribution is absolutely removed from consideration. The
corresponding values provide the spatial dispersion forces due
to the close position of not-chemically bonded C and H atoms.
The results of QC calculations provide the total dispersion
interaction of all CH, groups in the studied ILs. At the same
time, the very good correlation between experimental and
calculated dispersion forces obviously shows (see Fig. 7) that

Table 5 Quantum chemical quantification of dispersion forces for tetra-
alkylammonium-based ILs with the [NTf,] anion (in kJ mol™)

Compound —Egisp(gas)oc  —Eaisp((CH2)n8aS)oc  —Edisp((CH2),8aS)exp

N1123 232.6 119.5 10.9
N1114 230.1 117.1 7.8
N1115 246.8 133.7 10.8
N1224 266.9 153.8 14.1
N2225 302.1 189.1 21.5
N1444 327.7 214.6 29.6
N2228 360.2 2471 30.0
N2666 463.6 350.5 44.0
N6666 517.4 404.4 54.4
N1888 532.6 419.6 49.9
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Fig. 7 The correlation of gas phase dispersive interaction between alkyl
chains for ammonium-based ILs with the [NTf,]~ anion calculated at the
D3(BJ) corrected B3LYP level of theory and the results of experimental
evaluation with the “step by step” method.

both the experimental ‘“step by step” and QC methods are
consistent and can quantitatively describe general trends of
increasing dispersion interactions with the growing chain
length:

Edisp((CHz)gaS)Qc =6.70 Edisp((CHZ)gas)exp + 52 (R2 =0.975)

(11)

4. Conclusions

We measured vapor pressures and vaporization enthalpies of
tetra-alkyl-ammonium ionic liquids with bis(trifluoromethyl-
sulfonyl)imide [NTf,]” anions and related molecular liquids,
trialkylamines, by using a quartz-crystal microbalance (QCM).
For supporting the QCM data, we additionally determined
vaporization enthalpies from experimental activity coefficients
at infinite dilution. The resulting alkyl chain length dependencies
for the ionic and molecular liquids allowed for quantifying the
dispersion forces in the gas phase species of the ionic liquid
without the use of quantum chemical calculations of ion-pairs.
The purely experimental results suggest that the alkyl chains do
not show star-like topologies but embrace the anion while maxi-
mizing dispersion interactions with increasing alkyl chain lengths.
This way, the overall dispersion interactions in the gas phase
species with the longest alkyl chains amount for the energy of two
and a half hydrogen bonds. The proportion of dispersion in the
gas phase structures with increasing number of methylene groups
in the ammonium cations is strongly supported by quantum
chemical calculations. Our careful study will help to facilitate the
analysis of the thermodynamic properties of newly synthesized
ionic or molecular liquids.
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