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Kangjie Lin, ‡a Youjun Xu, ‡a Jianfeng Pei *b and Luhua Lai *ab

Retrosynthetic route planning can be considered a rule-based reasoning procedure. The possibilities for

each transformation are generated based on collected reaction rules, and then potential reaction routes

are recommended by various optimization algorithms. Although there has been much progress in

computer-assisted retrosynthetic route planning and reaction prediction, fully data-driven automatic

retrosynthetic route planning remains challenging. Here we present a template-free approach that is

independent of reaction templates, rules, or atom mapping, to implement automatic retrosynthetic route

planning. We treated each reaction prediction task as a data-driven sequence-to-sequence problem

using the multi-head attention-based Transformer architecture, which has demonstrated power in

machine translation tasks. Using reactions from the United States patent literature, our end-to-end

models naturally incorporate the global chemical environments of molecules and achieve remarkable

performance in top-1 predictive accuracy (63.0%, with the reaction class provided) and top-1 molecular

validity (99.6%) in one-step retrosynthetic tasks. Inspired by the success rate of the one-step reaction

prediction, we further carried out iterative, multi-step retrosynthetic route planning for four case

products, which was successful. We then constructed an automatic data-driven end-to-end

retrosynthetic route planning system (AutoSynRoute) using Monte Carlo tree search with a heuristic

scoring function. AutoSynRoute successfully reproduced published synthesis routes for the four case

products. The end-to-end model for reaction task prediction can be easily extended to larger or

customer-requested reaction databases. Our study presents an important step in realizing automatic

retrosynthetic route planning.
Introduction

Organic synthesis has a history spanning over 190 years since
the synthesis of urea by Friedrich Wöhler in 1828, but remains
a rate-limiting step for the discovery of novel medicines and
materials.1 One of the critical steps for efficient and environ-
mentally friendly synthesis of valuable molecules lies in well-
designed and feasible retrosynthetic routes. Retrosynthetic
analysis, rst used by Robert Robinson in tropinone synthesis2

and then formalized by E. J. Corey,3 is a fundamental technique
that organic chemists use to design target molecules. However,
the synthesis route of a molecule is usually diverse, especially
for complex compounds like natural products. Historically,
synthesis route planning has largely relied on the knowledge of
experienced chemists.
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tion (ESI) available. See DOI:

f Chemistry 2020
Since the 1960s, computer-aided retrosynthetic analysis
tools have attracted much attention, with the earliest retrosyn-
thesis program likely being the early Logic and Heuristics
Applied to Synthetic Analysis (LHASA) work of E. J. Corey.4

Computer-aided synthesis planning has been well-reviewed
over the past years.5–11 According to a recent review,11

computer-aided retrosynthetic route planning strategies can be
clustered into two main categories: template-based and
template-free methods. Template-based methods, including the
LHASA soware,4,12 have been applied since the philosophy of
retrosynthetic analysis was put forward by E. J. Corey. These
methods can also be categorized as using either a manual
encoding approach or an automated extraction approach. Syn-
thia (formerly Chematica), one of the most well-known, expert-
encoded, template-based retrosynthetic analysis tools, is
a commercial program developed by Grzybowski and co-
workers.9,13–18 This tool uses a manually collected knowledge
database containing about 70 000 hand-encoded reaction
transformation rules.18 Based on human knowledge of organic
synthesis and the encoding of organic rules over a period of
more than 15 years, Synthia has been validated experimentally
as an efficient toolkit for complex products recently.16 However,
it would not be practical to manually collect all the knowledge of
Chem. Sci., 2020, 11, 3355–3364 | 3355
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organic synthesis considering the exponential growth rate of the
number of published reactions.19 Another straightforward
strategy for a template-based method, the ReactionPredictor
from Baldi's group,20–22 is based on mechanistic views. This
method considers the reactions between reactants as electron
sinks and sources, and ranks the interactions using approxi-
mate molecular orbitals. Although these approaches are logical
and interpretable for chemists, the manual encoding of mech-
anistic rules cannot be avoided and the mechanisms outside
the knowledge database cannot be predicted.

In addition to manual rules, automated reaction templates
have been extracted by several groups. Based on the algorithms
described by Law et al.23 and Bogevig et al.,24 Segler and Waller
employed a neural network to score templates and perform
retrosynthesis and reaction prediction.25,26 Coupling this
method with Monte Carlo Tree Search (MCTS), they built
a novel method for synthetic pathway planning.19 Later, Coley
et al.27 used automatically extracted templates to perform ret-
rosynthesis analysis based on molecular similarity, where they
considered the similarity of both products and reactants to
score and rank the templates. Recently, Baylon and coworkers28

applied a multiscale approach based on deep highway networks
(DHN) and reaction rule classication for retrosynthetic reac-
tion prediction. Their approach achieved better performance
than other previous methods based on automated extraction of
reaction templates. However, there are two unavoidable limi-
tations when using automatically extracted reaction templates.
First, there is an inevitable trade-off between generalization and
specicity in template-based methods. Second, current
template extraction algorithms consider reaction centers and
their neighboring atoms, but not the global chemical environ-
ment of molecules. Moreover, mapping the atoms between
Fig. 1 The workflow of AutoSynRoute. The Transformer architecture wa
molecule was transformed into simpler intermediate molecules using a o
obtained. An automatic searching system was constructed for retrosynt

3356 | Chem. Sci., 2020, 11, 3355–3364
products and reactants remains a nontrivial problem for all
template-based methods.29

Recently, template-free models have emerged as a promising
strategy to predict reactions and retrosynthetic trans-
formations. With the pioneering work using neural networks to
generate SMILES30 by Aspuru-Guzik et al.31 and Segler et al.,32

sequence-to-sequence (seq2seq) models have been gradually
applied as an important template-free model in reaction
outcome prediction and retrosynthetic analysis. The rst
template-free model in retrosynthetic analysis was proposed by
Liu and co-workers,29 who used a seq2seq model to predict
SMILES30 strings for reactants of a single product. They used
a neural network architecture that involves bidirectional long
short-term memory (LSTM) cells with an additive attention
mechanism. The seq2seq model performed comparably to its
template-based baseline (37.4% versus 35.4% in top-1 accuracy).
However, the invalidity rate of the top-10 predicted SMILES
strings was greater than 20%, which restricts its potential in
further synthetic pathway planning.

In 2017, Vaswani et al.33 proposed a multi-head attention-
based Transformer model in machine translation tasks that
achieves state-of-the-art performance. Later, two studies used
this model to predict the reaction outcome and reactants for
single-step retrosynthetic analysis.34,35 Herein, we present
a novel template-free strategy for automatic retrosynthetic route
planning. The workow is depicted in Fig. 1. We rst trained an
end-to-end model for single-step retrosynthetic task prediction
using the Transformer architecture on the reactions from the
United States patent literature. Our best model achieved a top-1
prediction accuracy of 63.0% using USPTO_MIT (without chiral
species) with reaction classication, which exceeds that of the
previous similarity-based27 or LSTM-based seq2seq models.29
s used to develop our one-step model based on two datasets. A target
ne-step model. By repeating this operation, terminal molecules can be
hesis route planning using MCTS with a heuristic score.

This journal is © The Royal Society of Chemistry 2020
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This model generated fewer invalidity errors of SMILES (99.6%
validity rate) compared to the previously reported seq2seq
model. When applied recursively, our model successfully per-
formed multi-step retrosynthetic route planning for four case
products. It should be noted that none of the products or
intermediates appears in the training dataset. We further
developed an automatic data-driven end-to-end retrosynthetic
route planning system (AutoSynRoute) using MCTS with
a heuristic scoring function. AutoSynRoute successfully repro-
duced the published pathways for the four case products,
demonstrating its potential for retrosynthetic pathway
planning.
Fig. 2 A schematic diagram of the Transformer architecture. Redrawn f

This journal is © The Royal Society of Chemistry 2020
Methods

Cadeddu et al.36 described retrosynthesis as natural language
processing and termed this idea “chemical linguistics.” Simi-
larly, retrosynthetic analysis can also be treated as a machine
translation problem, where the SMILES strings are considered
to be sentences and each token or character is treated as a word.
In translation, each sentence has several different representa-
tions. Similarly, each product SMILES string can be “translated”
to several different reactant SMILES strings, consistent with
different disconnections in retrosynthetic analysis. Our seq2seq
approach was based on the Transformer architecture, which
rom ref. 33.

Chem. Sci., 2020, 11, 3355–3364 | 3357
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represents one of the state-of-the-art techniques in neural
machine translation. Unlike previous LSTM-based seq2seq
models, this architecture was solely based on self-attention
mechanisms, which have two main advantages: they can
signicantly improve the efficiency of the training time using
parallelizable computation, and they allow the encoder and
decoder to peek at different tokens simultaneously, thereby
enabling effective computing of long-range dependent
sequences and contributing to the production of high-validity
SMILES strings. The Transformer architecture is depicted in
Fig. 2 and the detailed description of the model can be found in
the ESI.†
Datasets and data preprocessing

We used two datasets to develop our single-step retrosynthetic
prediction models. We rst trained our model using a common
benchmark dataset with ca. 50 000 reactions (USPTO_50K)
extracted from the United States patent literature, which was
previously used by Liu et al.29 and Coley et al.27 The reaction
classes in the dataset were labeled by Schneider and co-
workers37 as described in Table 1. Based on the study by Liu
et al.,29 we used a 90%/10% training/testing split, and the vali-
dation set was randomly sampled from training sets (10%). To
develop a more powerful model, we also used a much larger
dataset called USPTO_MIT38 from the USPTO,39 with pre-
processed training, validation, and testing sets of 424 573,
42 457 (randomly sampled from training sets), and 38 648
reactions, respectively.

Inspired by Schneider et al.,37,40 the original USPTO_MIT
dataset was preprocessed to extract the reactants and products
of each reaction. We classied the reactions using a machine
learning method based on reaction ngerprints and agent
features. Moreover, we tried both token- and character-based
methods to tokenize the SMILES strings as model inputs. The
details of the reaction classication algorithm and results and
the difference between token- and character-based preprocess-
ing are described in the ESI.†
Monte Carlo tree search

To implement automatic retrosynthetic route search, MCTS41 is
used to create a search tree where each node corresponds to
Table 1 Descriptions of ten reaction classes and the fraction of USPTO

Reaction class Reaction name

1 Heteroatom alkylation and arylation
2 Acylation and related processes
3 C–C bond formation
4 Heterocycle formation
5 Protections
6 Deprotections
7 Reductions
8 Oxidations
9 Functional group interconversion (FGI)
10 Functional group addition (FGA)

3358 | Chem. Sci., 2020, 11, 3355–3364
a set of molecules (shown in Fig. 3). Nodes with terminal
molecules (starting materials) are called terminal nodes. Start-
ing with the root node (a target molecule), the search tree grows
gradually by iterating four steps, including selection, expansion,
simulation, and backpropagation. Each intermediate node has
a score of upper condence bound (UCB)42 indicating how
promising it is to explore this subtree. The selection step
chooses a node with the maximum UCB, which is subsequently
expanded into children nodes generated by our automatic ret-
rosynthetic pathway planning model. For the rollout in the
simulation step, paths from the expanded node to terminal
nodes are built by a customized approach. The somax value of
a heuristic score (see eqn (1)) of each node offers the prior
probability of sampling in one rollout step. The larger the value,
the more likely it will be sampled. This approach is considered
helpful for better and faster searching than uniformly random
rollout. A node at t-1 has a partial retrosynthesis pathway (s1,.,
st-1)corresponding to the path from the root to this node. Based
on the node st-1, our approach can be used to compute the
distribution of the next node st. Sampling from this distribu-
tion, the pathway is elongated by one step. Our method repeats
elongation until the terminal node occurs. Aer nishing
elongation, the dened reward (the detailed description of the
reward can be found in the ESI†) of the generated pathway is
used to propagate backward and update the UCB scores of
traversed nodes during the backpropagation process. Please see
ref. 43 for details about MCTS.

The source code is available online at https://github.com/
PKUMDL-AI/AutoSynRoute. All program scripts were written
in Python (version 3.6), and the open source RDKit (version
2018.09.02)44 was used for reaction preprocessing and SMILES
validation. Our seq2seq model was built with TensorFlow
(version 1.12.0),45 and the details of key hyperparameter settings
of our models are available in the ESI.†
Results
Single-step evaluation

As summarized in Table 2, our Transformer-based model ach-
ieved the best top-1 accuracies of 54.6% and 63.0% for USP-
TO_50K and USPTO_MIT datasets with additional reaction
classes, respectively. With prior reaction class information, the
_50K and USPTO_MIT

Fraction of
USPTO_50k (%)

Fraction of
USPTO_MIT (%)

30.3 29.9
23.8 24.9
11.3 13.4
1.8 0.7
1.3 0.3

16.5 14.1
9.2 9.4
1.6 2.0
3.7 5.0
0.5 0.2

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Monte Carlo tree search for retrosynthetic pathway search. (a) Selection step. The search tree is traversed from the root to a leaf by
choosing the child with the largest UCB score. (b) Expansion step. Children nodes are created by sampling from the Transformer model. (c)
Simulation step. Paths to terminal nodes are created by the rollout procedure using the model with the distribution of a heuristic score function.
(d) Backpropagation step. Rewards of the terminal node are computed for updating UCB scores of the upstream nodes.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
 2

02
0.

 D
ow

nl
oa

de
d 

on
 2

4.
07

.2
02

4 
03

:2
2:

38
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
top-1 prediction accuracy of our model is much better than that of
the LSTM-based seq2seq model proposed by Liu et al.29 and also
higher than that of the similarity-based model by Coley et al.27 As
shown in Table 3, when the reaction classes are not provided, the
top-1 accuracy of our model is still higher than those of the other
methods. The results of Liu et al.'s and Segler et al.'s models are
implemented by us using Liu et al.‘s public code and Coley's
reproduced code (https://github.com/connorcoley/retrotemp),
respectively. The reproduction details of the two baseline experi-
ments can be found in the ESI.† The template-based methods
proposed by Baylon et al.28 are also competitive, but currently we
cannot make a direct comparison with their approaches because
their model and test data are unavailable to us.
Table 2 Model performance with additional reaction classesa

top-n accuracy (%), n¼

Model (dataset) 1 3 5 10

Liu et al. template +class (USPTO_50K)29,b 35.4 52.3 59.1 65.1
Liu et al. LSTM +class (USPTO_50K)29,b 37.4 52.4 57.0 61.7
Coley et al. similarity +class (USPTO_50K)27 52.9 73.8 81.2 88.1
Our Transformer +token +class (USPTO_50K) 54.3 74.1 79.2 84.4
Our Transformer +char +class (USPTO_50K) 54.6 74.8 80.2 84.9
Liu et al. LSTM +class (USPTO_MIT)29,b 56.1 69.9 73.6 77.3
Our Transformer +char +class (USPTO_MIT) 63.0 79.2 83.4 86.8

a Key: “+class” means that reaction class information is added to the
model; “+token” means that token-based preprocessing is applied;
“+char” means that char-based preprocessing is applied. b The results
are implemented by us using Liu et al.'s public code.

This journal is © The Royal Society of Chemistry 2020
The ratio of invalid SMILES strings produced by our model is
much lower than that of the previous LSTM-based model, which
means that our model has a powerful ability to capture the
grammar of SMILES representations. As shown in Table 4, the
top-10 invalidity error of our model is 12.6%, which is close to
the top-1 invalidity error of Liu's model. When we trained our
model on the large-volume USPTO_MIT dataset, the top-1
accuracy increased to 63.0%, which shows the generality
ability of our model by increasing the chemical knowledge base.
Meanwhile, the error rate of SMILES strings decreases to 0.4%
in the top-1 prediction.

A comparison of the top-10 accuracies across all classes of
our model with those of the previous studies on USPTO_50K
Table 3 Model performance without additional reaction classesa

top-n accuracy (%), n¼

Model (dataset) 1 3 5 10

Liu et al. LSTM (USPTO_50K)29,b 28.3 42.8 47.3 52.8
Liu et al. LSTM (USPTO_MIT)29,b 46.9 61.6 66.3 70.8
Coley et al. Similarity (USPTO_50K)27 37.3 54.7 63.3 74.1
Segler–Coley-retrained (USPTO_50K)25,c 38.7 56.2 62.2 69.2
Segler–Coley-retrained (USPTO_MIT)25,c 47.8 67.6 74.1 80.2
Karpov et al. Transformer (USPTO_50K)35 42.7 63.9 69.8 —
Our Transformer +token (USPTO_50K) 42.0 64.0 71.3 77.6
Our Transformer +char (USPTO_50K) 43.1 64.6 71.8 78.7
Our Transformer +char (USPTO_MIT) 54.1 71.8 76.9 81.8

a Key: “+token” means that token-based preprocessing is applied;
“+char” means that char-based preprocessing is applied. b The results
are implemented by us using Liu et al.'s public code. c The results are
implemented by us using Coley's reproduced code (https://
github.com/connorcoley/retrotemp).

Chem. Sci., 2020, 11, 3355–3364 | 3359
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Table 4 Breakdown of the grammatically invalid SMILES error for
different beam sizesa

Invalid SMILES rate (%)

Model (dataset) 1 3 5 10

Liu et al. LSTM +class (USPTO_50K)29 12.2 15.3 18.4 22
Our Transformer +token (USPTO_50K) 2.2 3.7 4.8 7.8
Our Transformer +token +class (USPTO_50K) 2.3 4.9 7.0 12.1
Our Transformer +char (USPTO_50K) 2.1 3.5 4.7 8.3
Our Transformer +char +class (USPTO_50K) 2.4 4.4 6.4 12.6
Our Transformer +char +class (USPTO_MIT) 0.4 1.5 2.9 8.6

a Key: “+class” means that reaction class information is added to the
model; “+token” means that token-based preprocessing is applied;
“+char” means that char-based preprocessing is applied.
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and USPTO_MIT datasets is shown in Table S1.† The perfor-
mance of our model was much better than that of the seq2seq
model of Liu et al.29 across all reaction categories. However, our
model performed just slightly better or comparably to the
similarity-based model in reaction categories 3, 7 and 9.

As shown in Fig. 4, we used the top-5 retrosynthetic
disconnections of a compound in a test set as an example to
analyze the specicity and generality of our model. We chose
a compound in class 1 as an example, in which the ground truth
prediction ranks rst and the other predicted reactions are also
chemically plausible. The results show that our model is able to
give reasonably diverse disconnections and the top-5 discon-
nections comply with the reaction class of heteroatom alkyl-
ation. Additional results regarding single-step retrosynthetic
disconnections within each reaction class can be found in the
ESI (Fig. S1–S10).†
Iterative multi-step pathway generation

As the prediction accuracy of our model is quite high (even
higher than that of similarity-based methods), we also
Fig. 4 Top-5 retrosynthetic predictions of an example reactionwith class
corresponding to a heteroatom alkylation. Other suggestions among th

3360 | Chem. Sci., 2020, 11, 3355–3364
examined the potential of our model in recursive generation of
candidate reactants. We chose four target compounds as
examples, including the antiseizure drug Runamide,46 a novel
allosteric activator for glutathione peroxidase 4 (GPX4),47 and
two representative compounds used by other retrosynthetic
programs.16,19 By enumerating different reaction classes, we
sought to conrm that our model could successfully reproduce
the published reaction pathways of the four compounds. The
input structures (products or intermediates) of the four exam-
ples do not appear in our training set of either the USPTO_50K
or USPTO_MIT datasets.

For the rst example of retrosynthesis pathway planning,
Runamide (shown in Fig. 5a), the reported rst step is the
formation of an amide bond, ranking rst in reaction class 9
(functional group interconversion). The subsequent step is also
found to rank top-1 in class 4 (heterocycle formation), consis-
tent with the mechanistic view. This is followed by another
functional group interconversion (FGI) step, the nal step,
predicted precisely as top-1 in class 9. It is worth mentioning
that different reaction classes may have the same disconnec-
tions and thus result in the same reactants. For example, the
third step of the aforementioned route also ranks rst in class 1
(heteroatom alkylation), which is also plausible.

As shown in Fig. 5b, the second example comes from the
previous work of Grzybowski et al.,16 which was the retrosyn-
thesis pathway planning of an antagonist of the interaction
between WD repeat-containing protein 5 (WDR5) and mixed-
lineage leukemia 1 (MLL1).48 Our model could recover the
route suggested by the commercial program Synthia. The rst
step is a FGI predicted as top-2 by our model. The next step is
a common amide formation. The nal step is a C–C bond
formation, which was also predicted by our model as top-1 with
the correct reaction class.

The aforementioned two routes are predicted by our model
trained on the USPTO_50K dataset. However, another two more
challenging routes cannot be completely predicted due to less
1. Themodel successfully proposes the recorded reactants with rank 1,
e top-5 predictions are also chemically reasonable.

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Iterative multi-step pathway generation. The routes are constructed by iteratively applying single-step retrosynthetic methodology to (a)
Rufinamide, (b) an antagonist of the interaction between WDR5 and MLL1, from the example of Grzybowski et al.,16 (c) an allosteric activator for
GPX4, and (d) an intermediate of a drug candidate from the example of Segler et al.19 The suggested disconnections are consistent with published
pathways. The number before the “.” indicates the reaction class, and the number after the “.” indicates the ranking in the top-10 prediction.
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coverage of chemical space. Remarkably, using the USPTO_MIT
dataset (without stereochemistry information), our trained
model could completely reproduce the following two routes in
our top-10 predictions, suggesting the importance of training
on enlarging coverage of the chemical knowledge space.

The third example is the retrosynthesis pathway planning of
the GPX4 activator compound, as depicted in Fig. 5c. The
published rst step ranks rst in class 6 (deprotection). The
second step could be regarded as acylation and related
processes and it is predicted correctly as top-8 by our model.
The ground truth of the third step ranks top-1 in class 9, fol-
lowed by a deprotection step in top-3, and a nal acylation and
related processes in top-1.

The fourth example, described in Fig. 5d, is the retrosyn-
thesis pathway planning of an intermediate of a drug candidate
from the example of Segler and co-workers.19 The rst, second,
and third steps can be easily reproduced by our model as top-1
or top-2 with the right class. The fourth step is a common
functional group addition, followed by an uncommon reduc-
tion of a carbonyl group. Aer the nal step of heteroatom
This journal is © The Royal Society of Chemistry 2020
alkylation, our model was shown to reproduce the steps pre-
dicted by the former template-based method.
Automatic retrosynthetic pathway planning

As shown above, when considering the top 10 prediction of each
of the 10 reaction classes, 100 candidate reactants for a target will
be predicted in one step. A recursive application in a four-step
pathway will produce 100 000 000 candidate pathways
assuming all of the output SMILES strings are valid. To make our
model applicable for retrosynthetic pathway planning, we needed
to achieve efficient automatic pathway searching and ranking.
We used a MCTS algorithm combined with a heuristic scoring
function to achieve this purpose. Our heuristic scoring function
was inspired by Synthia's Chemical Scoring Function (CSF).9 We
considered the Scoremodel produced by our model (representing
the decoding log probability from the beam search), the changed
SMILES length from the target to the reactants, and the changed
number of rings from the target to the reactants. To scale the
heuristic scoring function in a comparable range, we presented
the scoring function in the formula
Chem. Sci., 2020, 11, 3355–3364 | 3361
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Scorestep ¼ a � exp(Scoremodel)

� (b � RINGSchanged + SMILESchanged) (1)

We dened the parameters a and b as 100 and 6 in our four
examples.

To make the model applicable, we also needed to dene the
terminal nodes or reactants, which means the commercially
available molecules. We used a dataset containing 84 807
building blocks from a chemical supplier (Sigma Aldrich), ob-
tained from the ZINC15 database (http://zinc15.docking.org/)
and 17 182 molecules from the USPTO_MIT database. The data
were used as reactants at least ve times as terminal nodes (a
building block database of 93 563 molecules aer removing
redundant ones) for searching. Users can also use any specic
building block database as a terminal reactant database.

Using our automatic retrosynthetic pathway planning
strategy, most of the aforementioned steps in the four examples
can be found and ranked in top-10 except for the fourth step of
example 3 (ranks top-12) and h step of example 4 (ranks top-
25). The overall pathway ranking results of the four examples
can be found in the ESI (Fig. S11–S14†). Though our heuristic
scoring function is simple, these results are impressive. We
demonstrated the potential ability of our template-free model to
plan the automatic retrosynthetic pathway in a new way other
than by using current template-based methods.

Discussion
Advantages and disadvantages of our seq2seq models

As described previously, our models are template-free and free
of atom mapping. In addition, our models can learn the global
chemical environments of molecules naturally, unlike other
template-based methods. However, our seq2seq models still
have some problems related to dataset and SMILES represen-
tations. In addition to having less coverage of the chemical
reaction space, the USPTO dataset does not contain reaction
yield information for reactions, which is useful to discriminate
whether the predicted pathways are efficient. Because our
models were trained on USPTO datasets, their prediction
accuracies are currently limited by these problems. A commonly
known challenge of using the SMILES or reaction SMARTS
format is the poor performance when dealing with stereo-
chemistry and tautomers. Like other template-based methods,
our models still have difficulty tackling reactions containing
chirality. In fact, our models are able to handle reactants or
products with simple chirality, as long as we include reactions
containing chirality. However, language models operating on
SMILES strings may have trouble learning to meaningfully
interpret stereochemistry. Furthermore, because our models do
not contain any information about reaction conditions, they are
currently unable to deal with asymmetric synthesis, most of
which relies on asymmetric catalysts. Meanwhile, tautomers,
though chemically equivalent in different molecular structures,
are regarded as different inputs and outputs in our model
because current SMILES grammar is sequence sensitive. This
problem is also common in template-based models, as
described by Segler et al.19 Embedding stereochemistry and
3362 | Chem. Sci., 2020, 11, 3355–3364
tautomerization into SMILES representation is a future direc-
tion to be explored.

Evaluation of different pathways

Retrosynthetic programs can predict thousands of different
pathways. However, picking a suitable pathway from the
predictions is not easy. Medicinal chemists may want a pathway
expanding structure–activity relationship exploration. Organic
chemists, especially those working on total synthesis of natural
products, may have preferences for the more efficient and
greener pathways. The choices of process chemists may be
inuenced by the cost of starting materials and avoidance of
toxic and dangerous molecules. It is difficult to nd a pathway
that fullls all these requirements. The heuristic metric
proposed by Synthia seems to be a reasonable strategy. This
metric has two scoring functions: the CSF and Reaction Scoring
Function. Another potential strategy is to use the SCScore
metric proposed by Coley and co-workers.49 In general,
a comprehensive scoring function will be related to the cost of
building blocks, the yield of each step, the avoidance of toxic
compounds and functional group incompatibility, the length of
the pathway, etc. The design of a perfect pathway scoring
function is still an unsolved problem in the community.

Evaluation of different models

Evaluation of a retrosynthetic analysis approach is also difficult
due to the lack of benchmark metrics. The strategy applied by
Segler et al.19 is a reasonable one. They invited professional
organic chemists to vote on the predicted and ground truth
pathways. If the chemists do not show preference for the ground
truth pathway, it means that the predicted one is also reason-
able. However, this assessment is difficult to standardize.
Certainly, validation in a wet lab is the most reliable way to
validate a model. As most chemists are interested in the
synthesis of novel complex compounds or nding efficient
alternative pathways for valuable molecules, validation of these
kinds of compounds with wet experiments should be consid-
ered. For example, the cooperation betweenMilliporeSigma and
Grzybowski et al.16 resulted in the efficient syntheses of eight
diverse and medicinally relevant targets, demonstrating the
reliability of Synthia to the chemistry community.

Conclusions

We developed an automatic data-driven retrosynthetic route
planning system (AutoSynRoute), which includes retrosynthesis
task prediction using a Transformer-based seq2seq model and
MCTS with heuristic scoring for route planning. AutoSynRoute
can be applied step-by-step and iteratively with user inputs. To
demonstrate its application, we predicted the top-10 discon-
nections for each of ten reaction classes and reproduced the
published retrosynthetic pathways for four examples. To further
demonstrate the power of AutoSynRoute, we successfully used it
to perform automatic retrosynthetic route planning for the
above four examples. Unlike other template-based methods,
which either rely on experts' laborious work or simple,
This journal is © The Royal Society of Chemistry 2020
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contextless rule-based systems, our approach is fully end-to-end
and naturally incorporates the global molecular context of the
reaction species. We demonstrated that a template-free
approach can be used to perform automatic retrosynthetic
route planning and reproduce the published synthesis routes of
valuable compounds. As mentioned by Coley et al., a complete
retrosynthetic program should be made up of ve compo-
nents:11 a library containing the disconnection rules, a recursive
application engine that generates candidate reactants for target
compounds, a building block database containing available
compounds to act as terminal nodes, a strategy to guide the
retrosynthetic search, and a scoring function for the single-step
or pathway. Our approach includes all of these components as
described herein.

Our approach can be further developed with larger and more
diverse chemical knowledge bases for training. Currently, the
information regarding reaction conditions like catalysts,
solvents, and reagents is missing because of the database used.
These conditions can be introduced in the future by using more
comprehensive datasets, like the Reaxys database or in-house
data. Future work will also tackle problems like SMILES0 poor
representations of stereochemistry and tautomerization.
Finally, we envision that automatic retrosynthetic route plan-
ning will play more important roles in real-world automated
synthesis of molecules50 and in de novo molecular design.51
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