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Aromatization-driven deconstruction/
refunctionalization of unstrained rings
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Aromatization-driven ring-opening/functionalization of common unstrained rings has been developed

with the in situ generation of pre-aromatic fused spiro heterocycles as the key step, featuring (1) simple

operation via a convenient one-pot reaction and (2) broad scope of various ring systems which do not

require pre-activation.

As is well known, aromatization is an important thermo-
dynamic driving force for the formation of stable aromatic
rings in organic synthesis.1 And the C–C bond activation as a
significant route for molecular modification is a hot research
field.2 Remarkably, the exploitation of aromatization-driven
C–C bond cleavage can be traced back to 1972 with the assist-
ance of transition metals.3 However, since then, the utilization
of aromatization as a driving force for C–C bond cleavage has
been unappreciated for a long time, and only a few relevant
studies have been reported.3,4 Recently, this strategy has been
revived gradually for elaborate transformations and has drawn
increasing attention from chemists.5–8 For example,
Melchiorre,6a Molander,6b and Chen6c developed C–H alkyl-
ation reactions independently by employing the aromatization-
driven C–C bond homolysis strategy of 4-alkyl-1,4-dihydropyri-
dines 1 (Scheme 1a). The Ma group performed the pioneering
work on the aromatization-driven 1,2-migration of Pt- or Au-
carbene intermediates for the synthesis of carbazoles
(Scheme 1b).7 Besides, You8a–e and other groups8f–g reported
the aromatization-driven ring-expanding rearomatization of
spiroindolenines 7 for the construction of polycyclic indoles 8
via acid-mediated migration, respectively. In addition, the spir-
ocyclization-dienone-phenol rearrangement cascade reactions
have been reported as well with the promotion of aromatiza-
tion (Scheme 1c).9 Yet the major reason that restricts the wide
application of aromatization as a driving force for synthetic
transformations is the difficulty in the in situ generation of
pre-aromatic substrates, which usually need to be prefabri-
cated through tedious steps.

Aliphatic rings are ubiquitous in various kinds of organic
compounds including pharmaceutical drugs, natural products,
and functional materials.10 Thus, employing the widely-

sourced aliphatic rings as starting materials for deconstruction
and re-functionalization would be significantly important for
the development of organic synthesis and industrial pro-
duction. However, for a long time, chemists have been limited
in the cleavage of strained rings, which were equipped with an
inherent thermodynamic driving force for releasing the ring
strain (Fig. 1).11 The C–C bond cleavage/editing of unstrained
aliphatic rings is a compelling challenge owing to the high
C–C bond dissociation energy.

This highlight article aims to provide a concise overview of
the aromatization-driven ring deconstruction strategy of

Scheme 1 Representative types of aromatization-driven C–C bond
cleavage.
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readily available unstrained cycloalkanones and cycloalkana-
mines via radical-mediated C–C bond fragmentation. The pro-
tocol features the in situ generation of pre-aromatic fused spiro
cycles 13, as shown in Scheme 1d, which might bring a dis-
tinct research direction for the development of organic
chemistry.

Aromatization-driven C–C bond
cleavage of unstrained cycloalkanones

C–C bond activation/functionalization of cycloalkanones
emerged as a useful method for synthesizing complex
scaffolds. Seminal work by Jun developed the rhodium(I)-cata-
lyzed ring-opening of medium to large cycloalkanone imines
to provide various aliphatic chain decorated ketones in 2001.12

Afterwards, the pursuit for the C–C bond activation/
functionalization of cycloalkanones went on uninterrupted,
but only sporadic works were reported for unstrained ring acti-
vation.13 Among them, the Dong group has made outstanding
contributions to the transition-metal catalyzed unstrained C–C
bond activation with the assistance of in situ formed directing
groups.13b–e

Very recently, Dong and co-workers reported the efficient
ring-opening reactions of unstrained cycloalkanones based on
radical fragmentation involved aromatization-driven C–C bond
activation (Scheme 2).14 These deacylative transformations pro-

vided various skeleton-functionalized aliphatic chains linking
pyrazole via a three-component coupling in the presence of an
iridium/phosphine combination. Considering the less-accessi-
ble carbocyclic pre-aromatics, the authors designed the three
component involved 1,3-dipolar addition to prepare the pre-
cursor of the pre-aromatized heterocycle which serves as the
key intermediate for the subsequent conversion. Various
cycloalkanones 15 with different substitutions and ring sizes
are available for the aromatization-driven deconstructive trans-
formations. In addition, good regioselectivity has been
observed when unsymmetrical ketones and heterocyclic
ketones were used, and the bond scission preferentially
occurred at more substituted carbons or the α-position of
heteroatoms. Besides, various natural products were well toler-
ated for the C–C bond transformation.

Based on mechanistic studies and DFT calculations, an aro-
matization-promoted homolytic C–C cleavage/radical recombi-
nation mechanism was proposed (Scheme 3). The initial
[3 + 2] cycloaddition occurs between 1,3-butadiene and the
hydrazone intermediate A, generating cyclic adduct B which
could be isolated. Then olefin migration takes place to afford
the dihydropyrazole intermediate C which serves as the pre-
aromatic substrate to drive the following homolytic C–C bond
cleavage with the promotion of an iridium catalyst. The
control experiments indicate that no C–C cleavage occurs
without the endocyclic double bond or the five-membered ring
structure, which demonstrates the significant role of the inter-
mediate C. Subsequently, the aromatization-driven deconstruc-
tion of the unstrained ring occurs, providing the iridium
complex D bearing aromatized pyrazole. Then the C–H reduc-
tive elimination or coupling with 1,3-butadiene of iridium
complex D takes place to afford the corresponding products 16
and 17, respectively. In addition to cycloalkanones, the deacyl-
ative transformations are suitable for a variety of linear
ketones as well, which offer strategic bond disconnections for
editing of the molecular skeleton.

In addition, Fan and co-workers described the ring-opening
reactions through [3 + 2] cycloaddition of enone with unstrained
cyclic ketone hydrazone followed by an aromatization-driven

Fig. 1 Strain energies of different sizes of aliphatic rings.

Scheme 2 Deconstructive pyrazole synthesis from unstrained
cycloalkanones.

Scheme 3 Plausible mechanism for deconstructive pyrazole synthesis
from unstrained cycloalkanones.
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homolytic C–C bond cleavage/radical reorganization
(Scheme 4).15 In this reaction, the in situ generated pre-aromatic
I is considered as the key intermediate likewise to drive the sub-
sequent C–C bond disconnection for aromatization.

Aromatization-driven C–C bond
cleavage of unstrained
cycloalkanamines

Cycloalkanamines as essential structural units are widely
found in natural products, pharmaceuticals, and agrochem-
icals. The development of convenient methods to make use of
the widespread cycloalkanamines is extremely meaningful for
modern chemical production. At present, the utilization of
cycloalkanamines via ring-opening reconstruction is underde-
veloped, and the scarce cases that are reported are almost
limited to strained rings.16

For example, Zheng and co-workers conducted the pioneer-
ing work on the photogenerated amine radical cation-involved
ring-extension reactions of cyclopropyl- and cyclobutyl-anilines
with alkenes and alkynes.16a–d Recently, Waser and co-workers
described an oxidative ring-opening strategy to transform ami-
nocyclopropanes into 1,3-dielectrophilic carbon intermediates
bearing a halide atom (Br, I) and a N,O-acetal which could be
converted into a wide range of α,γ-difunctionalized amines in
a one-pot or two-step operation.16e

Despite the developments mentioned above on the appli-
cation of cycloalkanamines as building blocks through ring-
reconstruction and functionalization, ring-opening of
unstrained cycloalkanamines still remains a compelling chal-
lenge. This situation can be attributed to ring-strain release as
a thermodynamic driving force for strained cycloalkanamines,
and the high reverse exo-cyclization rate constant of nitrile and
imine for unstrained cycloalkanamines, especially for 5- or
6-membered cycloalkanamines.11,17 In this context, Han and
co-workers achieved the introduction of aromatization as both
dynamic and thermodynamic driving forces for driving ring-
opening of unstrained primary cycloalkanamines.18 In this

metal-free reaction, the deconstruction/functionalization of
unstrained primary cycloalkanamines has been developed
unprecedentedly, producing carbonyl compound tethered ali-
phatic chains and 1,2,4-triazole directly through the autooxida-
tive aromatization-driven C(sp3)–C(sp3) bond cleavage
(Scheme 5). Similarly, the C–C bond cleavage of cycloalkana-
mines preferentially at more substituted carbons or the
α-position of heteroatoms was achieved. The wide substrate
scope tolerance of this protocol has been revealed by meticu-
lous evaluations, including monocyclic, bicyclic, bridged, and
complex natural product derivatives containing primary
cycloalkanamine moieties, which indicated its potential appli-
cation in the pharmaceutical and chemical industries. In
addition, the in situ generation of the pre-aromatic heterocycle
remains the core of this transformation, which is consistent
with Dong and Fan’s work.

In the proposed catalytic cycle (Scheme 6), the initial
nucleophilic substitution occurs between cycloalkanamine 21
and hydrazonyl chloride 22 to produce hydrazonamide L
which is auto-oxidized by air to generate aminyl radical M.

Scheme 4 Ring-opening reactions for the synthesis of 4-acylpyrazole
from unstrained cyclic ketone hydrazine.

Scheme 5 Deconstruction/functionalization of unstrained primary
cycloalkanamines.

Scheme 6 Proposed mechanism for the deconstruction/functionali-
zation of unstrained primary cycloalkanamines.
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Then radical M undergoes the tandem 1,5-hydrogen atom
shift/further oxidation/annulation process to form the key pre-
aromatic heterocycle N, which could be isolated. The spiro het-
erocycle N tends to be oxidized by air to afford the cyclic
amino radical intermediate O which appears in many
N-containing heteroaryl migration reactions.19 Then aromati-
zation serves as a driving force to promote the radical C–C
bond cleavage to furnish the aromatic 1,2,4-triazole. The gen-
erated distal alkyl radical P linking aromatic 1,2,4-triazole is
immediately intercepted by TEMPO to give the ring-opening
product Q. The final acyclic carbonyl compounds 23 and 24
carrying 1,2,4-triazole could be obtained by the treatment of
mCPBA via the oxidation/Cope-elimination sequence.

Conclusions

The C–C bond disconnection is of significant importance for
editing the molecular skeleton in organic synthesis, especially
for the cleavage of ubiquitous unstrained aliphatic rings.
Aromatization as both dynamic and thermodynamic driving
forces for promoting C–C bond cleavage could compensate for
the chemical inertness of unstrained aliphatic rings. We have
highlighted the aromatization-driven homolytic C–C bond
cleavage of common unstrained rings promoted by the in situ
generated pre-aromatic fused spiro cycles, which featured (1)
simple operation via a convenient one-pot reaction and (2)
broad scope of various ring systems which do not require pre-
activation. From our viewpoint, the aromatization-driven
deconstruction/refunctionalization of organic molecules
would be a powerful toolbox for modifying molecular skel-
etons and enriching the diversity of molecules.
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