Issue 16, 2020

Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications

Abstract

Layered transition metal dichalcogenide (LTMD)/carbon nanocomposites obtained by incorporating conductive carbons such as graphene, carbon nanotubes (CNT), carbon nanofibers (CF), hybrid carbons, hollow carbons, and porous carbons exhibit superior electrochemical properties for energy storage and conversion. Due to the incorporation of carbon into composites, the LTMD/carbon nanocomposites have the following advantages: (1) highly efficient ion/electron transport properties that promote electrochemical performance; (2) suppressed agglomeration and restacking of active materials that improve the cycling performance and electrocatalytic stability; and (3) unique structures such as network, hollow, porous, and vertically aligned nanocomposites that facilitate the shortening of the ion and electrolyte diffusion pathway. In this context, this review introduces and summarizes the recent advances in LTMD/carbon nanocomposites for electrochemical energy-related applications. First, we briefly summarize the reported synthesis strategies for the preparation of LTMD/carbon nanocomposites with various carbon materials. Following this, previous studies using rationally synthesized nanocomposites are discussed based on a variety of applications related to electrochemical energy storage and conversion including Li/Na-ion batteries (LIBs/SIBs), Li–S batteries, supercapacitors, and the hydrogen evolution reaction (HER). In particular, the sections on LIBs and the HER as representative applications of LTMD/carbon nanocomposites are described in detail by classifying them with different carbon materials containing graphene, carbon nanotubes, carbon nanofibers, hybrid carbons, hollow carbons, and porous carbons. In addition, we suggest a new material design of LTMD/carbon nanocomposites based on theoretical calculations. At the end of this review, we provide an outlook on the challenges and future developments in LTMD/carbon nanocomposite research.

Graphical abstract: Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications

Article information

Article type
Minireview
Submitted
27 Ақп. 2020
Accepted
06 Нау. 2020
First published
08 Сәу. 2020

Nanoscale, 2020,12, 8608-8625

Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications

Y. Kim, T. Park, J. Na, J. W. Yi, J. Kim, M. Kim, Y. Bando, Y. Yamauchi and J. Lin, Nanoscale, 2020, 12, 8608 DOI: 10.1039/D0NR01664K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements