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tion of the absolute free energy of
binding for drug molecules†
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Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet

remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not

been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations

based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing

protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol�1 can be achieved. We

also show a similar level of accuracy (1.0 kcal mol�1) can be achieved in pseudo prospective approach.

Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene

transcription, and are currently being investigated as therapeutic targets for cancer and inflammation.

The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like

compounds can be predicted for pharmacologically relevant targets.
Introduction

One of the “holy grails” of computational drug design is the
accurate prediction of the affinity of a drug for its target protein.
Despite the development of pharmacologically active molecules
being a multifactorial optimization problem, where other
considerations too, such as bioavailability and toxicity, play an
important role, high affinity of a compound for its intended
biological target is a necessary requirement for achieving a
potent, selective and ultimately efficacious drug. Unfortunately,
even when structural information is available, solvent effects,
conformational changes of the protein and/or the ligand and
entropy–enthalpy compensation make the rationalization of the
ligand–macromolecule association process a very complex
task.1,2 However, thanks to important advances in theory and
computing, particularly in the last decade, the prediction of
binding affinities using physics-based computer simulations
holds promise3,4 to achieve reliable binding energies estimates
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by naturally taking into account complicating effects due to the
discrete nature of solvent and entropy changes upon binding.

Alchemical free energy calculations and steered methods
based on all-atom molecular dynamics (MD) simulation in
explicit solvent are the typical approaches that operate at the
highest level of theoretical rigor and that are also accessible
to current typical levels of computational power. Alchemical
methods, oen also referred to as free energy perturbation
(FEP), are based on a non-physical thermodynamic cycle, where
the binding free energy is computed as the sum of multiple
steps during which the ligand is “inserted” or “removed” from
different environments, such as a bound and unbound state.5

Steered or pulling method approaches follow instead a physical
pathway, by applying a force that pulls the ligand away from the
protein.6 This is typically achieved either with non-equilibrium
simulations using the Jarzynski relationship,7–9 or by harmonically
restraining the ligand at different distances from the binding
pocket and then computing a potential of mean force.5,10,11

Alternative popular approaches include endpoint methods that
involve implicit solvent post-processing of explicit-solvent
simulations, such as molecular mechanics with Poisson–
Boltzmann or generalized Born and surface area (MM/PBSA and
MM/GBSA) methods.12–15 Another promising approach is meta-
dynamics16 with a funnel-shaped restraining potential, where
biasing energies are added in order to sample multiple binding
events.17

Absolute binding free energies have been calculated with
alchemical methods for a few protein–ligand systems. One of
the most studied macromolecular systems has been the engi-
neered binding pocket of T4 lysozyme. Mobley et al. studied the
binding of thirteen single-ring fragment-like ligands to a L99A
Chem. Sci., 2016, 7, 207–218 | 207
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Fig. 1 Bromodomain fold and acetyl-lysine binding pocket. (a) Cartoon representation of the structure of BRD4(1) bromodomain in complex
with an acetylated peptide. Crystallographically observed water molecules are represented as red spheres. (b) BRD4(1) acetyl-lysine binding site
with key interacting residues labeled.
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View Article Online
hydrophobic T4 lysozyme cavity mutant, obtaining a root mean
square (RMS) error compared to isothermal titration calorim-
etry (ITC) experiments of roughly 1.9 kcal mol�1.18 Boyce et al.
studied instead the binding of similar fragment-like ligands to a
slightly polar model cavity of T4 lysozyme (L99A/M102Q) in a
prospective fashion, obtaining a RMS error compared to ITC
for the ve compounds with measurable affinities of about
1.8 kcal mol�1.19 Another popular test system has been the
FK506-binding protein (FKBP12). The series of ligands evalu-
ated with FKBP12 were originally studied experimentally by
Holt et al. and are drug-like, with multiple rings and several
rotatable bonds, although sharing very similar chemical moie-
ties.20 Shirts rst reported a RMS error of about 2.0 kcal mol�1

for the affinity prediction of nine inhibitors,21 and a following
study by Wang et al. obtained an error of 2.0–2.5 kcal mol�1.22

For this system the experimental free energies taken as refer-
ence were derived from competitive inhibition of FKPB12
activity.20 Fujitani and coworkers obtained for eight FKBP-12
inhibitors a RMS difference from a linear t of only 0.4 kcal
mol�1, however, there was a large offset (�3.2 kcal mol�1)
relative to experiment.23 Other calculations have also been
reported albeit on smaller numbers of ligands and this makes it
harder to establish the actual errors.24–27

Driven by an interest to support the development of chem-
ical tools via simulation methods, we sought to assess whether
absolute free energy calculations based on standard imple-
mentations of alchemical transformations are now reaching
the point where they can be applied to diverse, drug-like organic
molecules and pharmacologically relevant targets. In order
to achieve our goal, we therefore compared predicted binding
free energies for 11 diverse, small molecule inhibitors that bind
to bromodomains (BRDs) with experimental measurements,
primarily isothermal titration calorimetry (ITC). BRDs are
epigenetic mark readers that specically recognize 3-N-lysine
acetylation motifs (Fig. 1) and have been found in 46 human
nuclear and cytoplasmic proteins.28,29 Acetylation is oen found
in macromolecular complexes implicated in chromatin remod-
eling, DNA repair and cell-cycle control, and especially on
208 | Chem. Sci., 2016, 7, 207–218
histones.30 Histone acetylation is thought to result in transcrip-
tional activation and altered acetylation levels have been linked
to aberrant transcription in cancer and inammation.28,31,32 Thus
novel BRD inhibitors are nding broad application in medicine
and basic biological research30 and indeed various BRD inhibi-
tors are currently in phase I and II clinical trial for the treatment
of NUT midline carcinoma, acute leukaemia, progressive
lymphoma and atherosclerosis.29

Here we perform a retrospective analysis in order to assess the
performance of the calculations in terms of accuracy and preci-
sion in a best-case scenario. We subsequently carry out a pseudo-
prospective study where we repeat the exercise with traditional
docking methods to give the initial poses without using any
structural information for the protein–ligand complexes. Both
studies give excellent agreement with experimental data. We
discuss the results in terms of how such calculations could be
used to aid the drug discovery and development process.

Methods
System setup

The initial conformations of the complexes were taken from
holo crystal structures (3U5J, 3U5L, 4OGI, 4OGJ, 3MXF, 4MR3,
4MR4, 3SVG, 4J0R, 4HBV) with the exception of ligand 11, which
was modeled based on the structure 3SVG, and from the results
of the ligand docking into the apo protein (2OSS). Missing
atoms in the crystals were modeled with the WHAT-IF web
interface33 and all organic molecules that were not the ligand of
interest were removed from the system, whereas all crystallo-
graphic waters were retained. Aer adding hydrogens with
Maestro (v9.5, Schrödinger), ligands were parameterized with
the general AMBER force eld (GAFF v1.5)34 and AM1-BCC
charges35 using AmberTools12 36 provided with the FESetup
tool v1.1pre1 (http://ccpforge.cse.rl.ac.uk/gf/project/ccpbiosim).
GROMACS topologies and coordinates were generated from the
AMBER ones using acpype (v.2013-11-28 Rev: 399).37 We used
the Amber99SB-ILDN force eld38 for the protein and the TIP3P
model39 for water molecules. The complexes were solvated in a
This journal is © The Royal Society of Chemistry 2016
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dodecahedral box, apart from ligands 1 and 4 that were solvated
in a cubic box, with periodic boundary conditions and a
minimum distance between the solute and the box of 12 Å.
Sodium and chloride ions were added to neutralize the systems.
Free energy calculations

Absolute binding free energy calculations were performed
beginning from both crystal ligand poses and docked poses as
detailed in the Results section, using the non-physical ther-
modynamic cycle illustrated in Fig. 2. All simulations were
carried out in GROMACS 4.6.5.40,41 The ligand van der Waals
interactions were decoupled and the charges annihilated using
a linear alchemical pathway with Dl ¼ 0.05 for the van der
Waals and Dl ¼ 0.1 for the coulombic transformations. For the
addition of the ligand restraints instead, 12 non-uniformly
distributed l values were used (0.0, 0.01, 0.025, 0.05, 0.075, 0.1,
0.15, 0.2, 0.3, 0.5, 0.75, 1.0). A total of 42 windows for the
complex simulations and 31 windows for the ligand simulations
were therefore employed. For each window, 10 000 energy
minimization steps were carried out using a steepest descent
algorithm. The system was subsequently simulated for 0.5 ns in
the canonical ensemble with harmonic position restraints
applied to the solute heavy atoms with a force constant of 1000
Fig. 2 Non-physical thermodynamic cycle. Scheme of the alchemical th
The fully interacting ligand (orange) in solution at the top left (A) is tra
equilibrium simulations where its electrostatic and van der Waals interacti
restrained while still non-interacting with the environment (C). This ste
described by Boresch et al.47 This state is equivalent to having the non-in
and non-interacting ligand in complex with the protein has its electrostat
restraints between ligand and protein are then removed (DGprot

restr), closin
ligand in complex with the protein (F).

This journal is © The Royal Society of Chemistry 2016
kJ mol�1 nm�2. Temperature was coupled using Langevin
dynamics42,43 with 298.15 K as the reference temperature. A 1 ns
position restrained run in the isothermal–isobaric ensemble
was then performed using the Berendsen weak coupling algo-
rithm.44 10 ns unrestrained production runs were performed
for data collection using Hamiltonian-exchange Langevin
dynamics with a 2 fs time-step in the NPT ensemble with the
Parrinello–Rahman pressure coupling scheme.45 3 million
swaps between any state pair were attempted every 1000 time
steps, following the Gibbs sampling scheme proposed by Cho-
dera & Shirts.46 This led to acceptance rates between neigh-
bouring states that ranged from 0.1 to 0.3 (mean and standard
deviation of 0.2� 0.1), but a probability of jumping to any other
state from 0.2 to 0.9 (mean and standard deviation of 0.7� 0.2).
This resulted in a total unrestrained simulated time of 43 ms for
this study. The relative position and orientation of the bound
ligand with respect to the protein was restrained by means of
one distance, two angles and three dihedral harmonic poten-
tials with force constant of 10 kcal mol�1 Å�2 [deg�2]. The
contribution of this set of restraints to the free energy can be
calculated analytically as described by Boresch et al.47 for the
non-interacting ligand in solution (DGsolv

restr), while it has to be
evaluated numerically for the interacting ligand in complex
with the protein (DGprot

restr). The equation used to evaluate this
ermodynamic cycle used to obtain the absolute binding free energies.
nsformed into a non-interacting solute (B, white) during a series of
ons are scaled to zero, providing the termDGsolv

elec+vdw. The ligand is then
p (DGsolv

restr) is computed analytically in accordance with the protocol
teracting ligand restrained within the protein cavity (D). The restrained
ic and VdW interactions turned back on again (E), giving DGprot

elec+vdw. The
g the cycle, and the final state is the unrestrained and fully interacting

Chem. Sci., 2016, 7, 207–218 | 209
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contribution also includes a correction for the standard-state
dependence of the binding free energy.47 A so-core potential48

was employed for the van der Waals interactions transformed.
For all simulations the particle mesh Ewald (PME) algorithm49

was used for electrostatic interactions with a real space cut-off
of 12 Å, a spline order of 6, a relative tolerance of 10�6 and a
Fourier spacing of 1.0 Å. A switch function between 9 Å and 10 Å
was used for the van der Waals interactions. The P-LINCS
constraint algorithm50 was used only on H-bonds. The GRO-
MACS long-range dispersion correction for energy and pressure
was used, and an additional long-range dispersion correction
(EXP-LR) was applied as described in Shirts et al.51 For charged
compounds (1 and 4), the semi-analytical correction scheme for
electrostatic nite size effects proposed by Rocklin et al.52 was
employed. The residual integrated potential (RIP) was calcu-
lated for 11 frames (every 1 ns, from 1 ns to 10 ns) using APBS
1.3.53 The mean RIP value only was used for the correction; its
standard deviation, resulting from the different conformations
of the ligand and complex, was always below 0.05 kcal mol�1.
Data analysis

The results were analysed with the implementation of the
multiple Bennet acceptance ratio (MBAR) provided with the
python package pymbar (https://simtk.org/home/pymbar).54

The rst 1 ns of each window was discarded as an equilibration
period. Prior to the free energy estimate, the data from each
lambda state were subsampled in order to include only uncor-
related data-points by calculating the autocorrelation time and
statistical inefficiency of the potential energy. 200 boot-strap
sets were constructed by random resampling with replacement
of the uncorrelated data, where the rst set was the original
sample. The free energy was estimated with MBAR for all of the
200 sets and the nal estimate is the mean of all these free
energy estimates.55 The error of the nal estimate is the sample
standard deviation of the estimates for all bootstrap samples.
For the calculations beginning from the crystal ligand poses,
the whole calculations have been repeated three times in order
to assess the convergence of the results. The combined free
energy estimate and standard deviation for ligand and complex
simulations were determined by taking the mean and sample
standard deviation of all the 600 bootstrap samples. Therefore,
the nal uncertainty is representative of both the statistical
uncertainty of the MBAR free energy estimate and the error due
to nite sampling. Ligand 11 is an exception, as it was modeled
based on ligand 9 and the PDB structure 3SVG, and two equally
plausible binding modes were present, where the tri-
uorotoluene moiety is ipped by 180�. Therefore, two calcu-
lation repeats were carried out per binding mode, resulting in a
total of four binding free-energy calculations; the results of
multiple binding modes can be combined in a single binding
free-energy value as described by Mobley et al.56 The nal
binding free energy for each ligand is the difference between the
decoupling of the ligand from the water solution and from the
solvated complex; the nal error in the binding free energies is
thus the root sum square of the uncertainties of ligand and
complex calculations.
210 | Chem. Sci., 2016, 7, 207–218
Docking

Rigid docking was performed withMOE v2013.08 using a crystal
structure (PDB 2OSS) of the apo protein of BRD4(1). The ve
highly conserved crystal waters present in all BET bromodo-
mains binding pockets were kept, whereas all other waters and
organic molecules were removed. The ligands' 2D chemical
structures were drawn inMarvin Sketch (v6.1.0, ChemAxon) and
a stochastic conformational search was performed in order to
generate 3D conformations. The number of conformations was
limited to a maximum of 100 per ligand and duplicates
conformations (RMSD < 0.25 Å) were removed. The docking
protocol employed the pharmacophore placement method and
the London DG scoring function. Each binding pose was then
minimized and rescored with the GBVI/WSA DG scoring func-
tion. The pharmacophore query was built based on the prop-
erties of the acetyl-lysine found in the PDB structure 3UVW, and
consisted of a hydrogen-bond acceptor site, to mimic the acetyl
oxygen, and a non-polar site, corresponding to the position of
the methyl moiety. The protein was parameterized using Amber
ff99SB.57 The ligand bonded parameters were obtained with 2D
extended Hückel theory,58 the VdW parameters were derived
from GAFF34 and the charges from Bond Charge Increments59

according to the AMBER10:EHT force eld option in MOE.
Duplicate poses were automatically removed based on their
hydrogen-bond and hydrophobic patterns, and poses with
positive binding free energy as predicted by the GBVI/WSA DG
scoring function were removed too, as they typically involved
clear clashes with the protein atoms. The remaining poses were
furthermore clustered by RMSD with a 3 Å cut-off in order to
have a coarser landscape of the possible binding poses, also
considering we were not interested in running the free energy
calculations on similar binding orientation that can intercon-
vert within the simulations timescale. Thus, only the best
scoring pose within each cluster would be used for free energy
calculations. This procedure aimed at reducing the number of
calculations to run while maximizing the chances of retaining
the poses that closely approximate the crystal.
Results
Absolute free energy calculations based on crystal structures
are accurate and precise

In this study we carried out thorough binding free energy
calculations using a non-physical thermodynamic cycle (Fig. 2),
starting from the crystal structures of BRD4(1) in complex with
11 inhibitors to a common binding site (Fig. 1, ESI Fig. 1†). We
were rst interested in evaluating the performance of the
predictions in a favorable scenario, that is, when the binding
conformation is known from experiment. The results from this
study, therefore, provide a picture of the best accuracy that can
be expected. In addition, we were interested in evaluating the
precision of the calculations, considering that large and exible
molecules are present in the test set (Fig. 3). Large uncertainties
in the results when dealing with such drug-like molecules
would indeed prevent a meaningful assessment of the accuracy
of the results. To this end, in addition to the bootstrap analysis
This journal is © The Royal Society of Chemistry 2016

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc02678d


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
 2

01
5.

 D
ow

nl
oa

de
d 

on
 0

2.
11

.2
02

5 
14

:1
1:

05
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
to evaluate the statistical uncertainty of the free energy esti-
mator, we decided to repeat the calculations three times, in
order to obtain an approximation of the uncertainty due to
nite sampling (for ligand 11, four repeats were performed, as
explained in the Methods section). It was in fact noticed that
while bootstrap provided a more realistic uncertainty estimate
than the MBAR error estimate alone, it still underestimated the
sample standard deviation. Each calculation was the results of
73, 10 ns long, all-atom molecular dynamics runs for a total
simulated time of about 25 ms for this portion of the study.

The set of inhibitors considered comprises mostly drug-like
molecules with a diverse range of physicochemical properties:
number of atoms from 22 to 77; molecular weight from 241 to
525 Da; number of rotatable bonds from 0 to 11; calculated
log P from �0.4 to 5.3 (ESI Table 1†). The range of affinities
includes micromolar binders such as ligand 10 (�23 mM) and 11
(�80 mM), down to low nanomolar binders such as ligand 1
(�40 nM) and 2 (�50 nM). A number of different chemical
groups are represented and the dissimilarity of the set provides
Fig. 3 Chemical structure of the ligands. The structures of the compound
in descending order of affinity.

This journal is © The Royal Society of Chemistry 2016
us with more condence that the results obtained are not
excessively biased by the limited chemical space considered.

Table 1 summarizes the results obtained for this retrospec-
tive study (see ESI Table 2† for a breakdown of the energetic
contributions). Most calculations agree extremely well with the
experimentally determined values. Seven out of eleven predic-
tions have errors below 0.5 kcal mol�1, and all prediction errors
are below 2.0 kcal mol�1. This resulted in a mean absolute error
(MAE) of 0.6 � 0.1 kcal mol�1 and a root mean square (RMS)
error of 0.8 � 0.2 kcal mol�1. The calculated free energies
strongly correlate with the experimental ones, as shown in Table
1 and Fig. 5, with a Pearson's r of 0.84 � 0.05, and manage to
rank the ligand affinities effectively (Spearman's r ¼ 0.82 �
0.06). The precision of the calculations is encouraging too, as in
only three instances the uncertainty is above 0.5 kcal mol�1, and
in all case it is below 1.0 kcal mol�1 (see ESI Fig. 2† for
convergence assessment). The largest uncertainties, as expec-
ted, occur when the largest ligands are considered.
s analyzed in this study are shown and are labeled with Arabic numerals

Chem. Sci., 2016, 7, 207–218 | 211
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Table 1 Summary of free energy calculation results based on crystal structures. DGcalc is the calculated standard binding free energy; DGexp is
the experimental standard binding free energy. Reported are also the PDB files used as input and the experimental method used for the affinity
measurement. All values are in kcal mol�1 a. All errors are one standard deviation. This is an estimate of the typical ITC standard deviation (1s)
based on the variability of the affinity values observed in the ABRF-MIRG002 inter-laboratory assessment;67 bthe error represents the standard
deviation of two measurements; gno error reported as only a single experiment was performed. Values for the difference between DGcalc and
DGexp might appear inconsistent due to rounding

Cpd DGcalc DGexp DGcalc–DGexp PDB Exp method Reference

1 �10.4 � 0.6 �9.8 � 0.1a �0.6 � 0.6 4OGI ITC 68
2 �9.5 � 0.4 �9.6 � 0.1a +0.2 � 0.4 3MXF ITC 69
3 �9.2 � 0.5 �9.0 � 0.1a �0.2 � 0.5 4MR3 ITC 70
4 �9.4 � 0.8 �8.9 � 0.1a �0.4 � 0.8 4OGJ ITC 68
5 �8.6 � 0.3 �8.8 � 0.1b +0.2 � 0.3 4J0R SPR 71
6 �9.9 � 0.8 �8.2 � 0.1a �1.7 � 0.8 3U5L ITC 72
7 �5.9 � 0.5 �7.8 � 0.1a +2.0 � 0.5 4MR4 ITC 70
8 �7.8 � 0.3 �7.4 � 0.1a �0.4 � 0.3 3U5J ITC 72
9 �7.7 � 0.4 �7.3 � 0.0b �0.4 � 0.4 3SVG AlphaScreen 71
10 �5.9 � 0.2 �6.3 � 0.1b +0.4 � 0.3 4HBV AlphaScreen 73
11 �5.4 � 0.2 �5.6g +0.1 � 0.2 Model AlphaScreen 74

Statistics
Mean absolute error 0.6 � 0.1
Root mean square error 0.8 � 0.2
Pearson's r 0.84 � 0.05
Spearman's r 0.82 � 0.06
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Accurate predictions can also be achieved in absence of
structural information about the complex

In order to evaluate the usefulness of such calculations in a
prospective context, we carried out a docking and free energy
calculation exercise based upon docking results rather than
crystal structures. The main objective of this portion of the
study was to evaluate whether the accuracy observed in the
retrospective exercise could be achieved with amore prospective
docking-based approach. Three-dimensional ligand structures
were therefore generated through a conformational search aer
drawing the ligands in two dimensions. A pharmacophore
based on acetyl-lysine was then created and used to aid the
docking of the 11 inhibitors to an apo structure of BRD4(1)
(pdb-ID 2OSS). Unrestrained molecular dynamics simulations
explore binding conformations close to each other, hence the
docking poses obtained were clustered by root mean square
deviation (RMSD) in order to avoid selecting conformations that
interconvert during the simulations time scales. The total
number of docked poses obtained was 72, which was reduced to
25 aer the clustering procedure and removal of poses with
positive binding free energies as predicted by the scoring
function. Fig. 4 shows these 25 docking poses (scores and RMSD
to crystal are summarized in ESI Table 3†).

For all ligands, a binding pose that captures the main
features of its interactions with BRD4(1) was among the results.
The docking soware managed to reproduce the binding mode
of the inhibitors well. For eight out of ten ligands the RMSD is
below 2.0 Å. In addition, docking correctly identied the pose
closest to the crystallographic observed one as being the most
favorable for 7 out of 10 ligands. For ligand 1, two poses actually
capture the correct binding mode of the molecules within
BRD4(1) binding pocket (poses 1-a and 1-c), despite the fact
212 | Chem. Sci., 2016, 7, 207–218
pose 1-a appears to be substantially different from the crystal
(RMSD of 8.4 Å). This is however due to the fact that a large part
of this inhibitor is solvent exposed and thus free to explore a
number of conformations. The extensive sampling in the
unrestrained simulations means that such deviation from the
crystal structure does not affect the free energy result (while it
does affect the docking score), and the ligand is still predicted
to be a strong binder when starting from pose 1-a (ESI Table 4†).
Docking, despite providing good binding conformations for the
ligands, and fairly good relative pose ranking for the same
ligand, scored the ligands inaccurately (Fig. 5b). With a RMS
error of 4.2 kcal mol�1 and a Pearson's r of �0.16, the affinities
provided do not help in discriminating between tight and weak
binders. Conversely, the free energy calculations based on MD
still managed to have excellent agreement with the experi-
mental affinities (Fig. 5c). Table 2 (full breakdown in ESI Table
4†) reports the results of the free energy calculations based on
the lowest energy docked poses, along with the RMSD of the
poses with respect to the crystal ones and the binding free
energy predicted by the docking scoring function for the same
ligand. Mean absolute and root mean squared errors were
respectively 1.0 � 0.1 kcal mol�1 and 1.4 � 0.1 kcal mol�1,
whereas the correlation to experimental values was of 0.77 �
0.04 for Pearson's r and of 0.72 � 0.08 for Spearman's r.

Absolute calculations can resolve ambiguities between
multiple potential binding modes

To illustrate the potential of alchemical calculations in
resolving ambiguous binding poses, the case of ligand 3 is
presented in more detail. Ligands 3 and 7 are closely related; in
fact ligand 3 is the synthetic precursor of ligand 7. Despite their
chemical similarity, the two ligands bind the BRD4(1) binding
This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Binding poses suggested by docking. In red are the crystallographic structures, and in green are the docked ligands. The ligand number
and cluster letter are reported on each pose.
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pocket in two very different modes, as shown in Fig. 6a. This
substantial change in binding pose is extremely hard to predict
by visual inspection or docking alone. Indeed, the most favor-
able binding pose (pose 3-a, docking score of �4.9 kcal mol�1)
for ligand 3 proposed by docking closely resembled the pose of
ligand 7 (Fig. 6b), which forms two hydrogen bonds with N140
through the dihydroquinazolinone scaffold and buries a
methoxy group at the bottom of the pocket. Pose 3-b was
assigned the second best docking score (�3.5 kcal mol�1) and
occupied the same cle as pose 3-a, however, with the amide
that is part of the dihydroquinazolinone scaffold pointing away
This journal is © The Royal Society of Chemistry 2016
from N140, the double hydrogen bond to it is lost. These poses
thus have a large RMSD as compared to the X-ray pose (6.8 Å
and 7.8 Å for poses 3-a and 3-b respectively). The actual binding
mode of the ligand is correctly represented instead by the pose
3-c, which is assigned a worse docking score (�2.6 kcal mol�1)
than 3-a and 3-b, and it is characterized by the formation of one
hydrogen bond with N140 thanks to the oxygen of the dime-
thylphenol ring, and the burial of a methyl group in the
hydrophobic pocket in an analogous fashion to the binding of
the acetyl moiety in Kac. Pose 3-d binds BRD4(1) through a
similar pose as 3-c, forming one hydrogen bond with N140
Chem. Sci., 2016, 7, 207–218 | 213
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Fig. 5 Scatter and correlation plots of the results. Correlation plots for
(a) the free energy calculations starting from the X-ray structures, (b)
the docking free energy scores and (c) the free energy calculations
starting from the docked structures.
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through the hydroxyl group and burying a methyl group deeply
in the protein binding pocket. However, while in 3-c and in the
X-ray structure the amide moiety of the dihydroquinazolinone
group points towards the solvent, in 3-d this is directed toward
the protein. As a consequence, pose 3-d shows an RMSD as
compared to the X-ray pose that is slightly larger (3.0 Å) than for
pose 3-a (2.0 Å). Pose 3-e occupies a similar volume to 3-c and 3-
d, but the dimethylphenol group responsible for binding is
solvent exposed and the two methoxy groups are instead
directed toward N140, resulting in a pose that overall has few
contacts with the protein and is very far from the crystal pose as
suggested by the large RSMD (7.8 Å).

Absolute free energy calculations were carried out starting
from all docking structures in order to evaluate whether the
method could unambiguously determine the lowest energy pose
in this challenging case. The binding free energy obtained for
the pose that best approximates the bound structure in the
crystal (pose 3-c), was �10.8 � 0.2 kcal mol�1, whereas the free
energy for the pose that binds BRD4(1) similarly to ligand 7
214 | Chem. Sci., 2016, 7, 207–218
(pose 3-a) was estimated to be �6.2 � 0.2 kcal mol�1. Pose 3-d,
which is the second closest to the X-ray structure and retains the
main interaction patters, was estimated to have a high binding
affinity too (�10.5 � 0.2 kcal mol�1). On the other hand, poses
3-b and 3-e were predicted to have signicantly lower binding
affinities (�6.5 � 0.3 kcal mol�1 and �7.3 � 0.2 kcal mol�1

respectively) than 3-c. The results therefore unequivocally
identied the crystallographic binding pose as being the most
favorable one.

There is only one case where the free energy calculations
appear to be unable to unambiguously identify the most stable
binding pose and that is ligand 6. In this case both the scoring
function and the MD suggest that the two poses (6-a and 6-b)
have similar binding affinity for BRD4(1). Interestingly, ligand
6, when compared to the similar ligand 8, has an additional
methyl group on its triazepine ring that can potentially mimic
the methyl moiety of the acetylated lysine. Indeed, pose 6-b
binds the pocket placing such methyl group similarly to Kac.
Pose 6-b might therefore be a legitimate secondary binding
pose, even though its binding affinity is likely overestimated.

Discussion

As discussed by Mobley and Klimovitch,60 reliable binding free
energy predictions can have a substantial impact in drug
discovery campaigns even with modest levels of accuracy. In
a lead optimization exercise, screening �10–100 molecules
per week with 2.0 kcal mol�1 of noise would reduce the
synthetic effort by a factor of 3 when the goal is to achieve a
10-fold improvement in binding affinity (i.e. a 1.4 kcal mol�1

improvement in binding free energy). Moreover, absolute
calculations need only structural information of the target
in order to be employed. Despite currently still being computa-
tionally expensive, at this level of accuracy it is easy to recognize
the great potential for application in lead optimization
campaigns in a near future, complementing relative calcula-
tions.61 Assuming steady improvements in hardware and algo-
rithmic performance, in the long term it is possible to foresee
applications in lead discovery too as an accurate rescoring
method. Furthermore, we showed how alchemical calculations
are able to resolve ambiguities regarding unexpectedly large
differences in binding modes between extremely similar mole-
cules. The precision of the calculations was rigorously assessed in
order to take into account both the statistical and sampling
uncertainties. We have shown how for even the largest and most
exible ligands standard deviations below 1.0 kcal mol�1 are
achievable within the microsecond time-scale. It is important
however to remember that the accuracy of such calculations
comes at a high computational cost with respect to scoring
functions or endpoint methods. For each calculation, the
production simulations for the complex took on average �29
hours on 504 cores (Intel Xeon E5-2697 v2 2.7 GHz), and�7 hours
on 372 cores for the ligand. While the use of graphical processing
units can substantially accelerate the simulations, the screening
of hundreds to thousands of compounds would still be a very
onerous exercise. Nonetheless, the accurate experimental deter-
mination of binding affinities using biophysical methods such as
This journal is © The Royal Society of Chemistry 2016
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Table 2 Summary of the free energy calculation results based on docking. Shown are the data for the predicted most stable binding poses for
each ligand. DGcalc is the calculated standard binding free energy; DGexp is the experimental standard binding free energy. For comparison, also
the affinities predicted with the docking scoring function are reported. All values are in kcal mol�1. All errors are one standard deviation. “X-ray
pose” indicates whether the lowest energy pose identified corresponds to the crystallographically observed binding mode; also the RMSD of the
pose as compared to the crystal is reported. aThis is an estimate of the typical ITC standard deviation (1s) based on the variability of the affinity
values observed in the ABRF-MIRG002 inter-laboratory assessment;67 bthe error represents the standard deviation of two measurements; gno
error reported as only a single experiment was performed. Difference values may include rounding effects

Compound DGcalc DGexp DGcalc–DGexp X-ray pose RMSD (Å) Docking DG

1 �10.9 � 0.8 �9.8 � 0.1a �1.1 � 0.8 Yes 3.2 �2.7
2 �10.1 � 0.4 �9.6 � 0.1a �0.5 � 0.4 Yes 1.9 �4.7
3 �10.8 � 0.2 �9.0 � 0.1a �1.8 � 0.2 Yes 2.0 �4.9
4 �9.0 � 0.8 �8.9 � 0.1a �0.0 � 0.8 Yes 1.8 �3.4
5 �8.3 � 0.2 �8.8 � 0.1b +0.5 � 0.2 Yes 1.2 �4.2
6 �10.6 � 0.3 �8.2 � 0.1a �2.4 � 0.3 No 5.0 �4.6
7 �6.6 � 0.3 �7.8 � 0.1a +1.2 � 0.3 Yes 2.2 �5.2
8 �10.2 � 0.2 �7.4 � 0.1a �2.8 � 0.2 Yes 0.8 �4.2
9 �7.7 � 0.1 �7.3 � 0.0b �0.5 � 0.1 Yes 1.8 �4.2
10 �6.2 � 0.1 �6.3 � 0.1b +0.1 � 0.2 Yes 0.7 �3.2
11 �5.4 � 0.1 �5.6g +0.2 � 0.1 n.a. n.a. �4.8

Statistics
Mean absolute error 1.0 � 0.1
Root mean square error 1.4 � 0.1
Pearson's r 0.77 � 0.04
Spearman's r 0.72 � 0.08
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ITC can be very time consuming too. Before the calorimetric
experiment can be prepared and executed, protein expression
and purication alone can take the order of a week, and the
ligand of interest might need to be synthesized through multiple
reaction steps. In addition, typically large quantities of titrant are
needed to carry out the experiment.

An interesting feature of absolute calculations is the
possibility to account for multiple binding poses in the nal
binding free energy estimate. This has been shown to be
important to accurately estimate the affinity of small frag-
ments,18 which by having a limited number of interactions
Fig. 6 Multiple potential binding conformations of ligand 3. (a) Overlay
respectively). (b) Overlay of docking poses 3-a and 3-c.

This journal is © The Royal Society of Chemistry 2016
with the protein, and less shape complementarity require-
ments as compared to drug-like molecules, may adopt
multiple binding modes with similar thermodynamic stability.
Nonetheless, a requirement for successful absolute binding
free energies is to have a starting structure that captures the
main feature of the protein–ligand complex. We showed how,
thanks to the ability of MD to explore an ensemble of
conformations, having a starting ligand pose that considerably
deviates from the crystal pose does not affect the results as
long as the main features of the binding are maintained.
However, the methodology is still heavily dependent on the
of the crystal structures for ligand 3 and ligand 7 (4MR3 and 4MR4

Chem. Sci., 2016, 7, 207–218 | 215
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quality of poses generated by docking. An incorrect pose
prediction will lead to a false negative when calculating the
ligand affinity. In a recent methodological advance it has been
shown how it is possible to combine Hamiltonian replica
exchange with Monte Carlo ligand translation/rotation moves
to simultaneously estimate binding free energies and identify
ligand binding sites and orientations.62 Further developments
in such direction, coupled with increasing computing power,
might alleviate the need to rely on faster and less accurate
methods such as docking for pose prediction. Nevertheless, in
this study, docking was sufficient and succeeded in nding
good poses for all of the inhibitors considered, while visibly
failing to rank them or estimate their binding energies. The
latter is a well-known limitation of scoring functions.63 These
were however accurately estimated by the MD-based calcula-
tions, thus making the docking scores ultimately irrelevant for
the nal results. The accuracy of free energy calculations is
dependent on other force eld parameters too. The effect of
van der Waals and coulombic non-bonded parameters on
binding free energy results has been previously discussed18,64,65

including using QM calculations to handle polarization
better.66 When dealing with drug-like ligands it is apparent
that torsional parameters can also affect the performance of
the calculations.75,76 However, it is encouraging that current
MM parameters despite their approximations manage to
provide the level of accuracy here presented, which could be
even improved by simple renement and extension of existing
models. With small molecules force elds being constantly
revised in order to better cover the large chemical space of
organic compounds, MD-based affinity predictions hold great
promise for the future of structure-based drug design.
Conclusion

We have shown here that for a small and fairly rigid system such
as a bromodomain, free energy calculations based onmolecular
dynamics are able to achieve RMS errors that do not exceed 1.4
kcal mol�1 when starting from docked structures, and down to
0.8 kcal mol�1 when using crystal structures and a more
expensive protocol. The present results corroborate the poten-
tial of absolute free energy calculations for drug discovery
applications. To our knowledge, this is the rst study on abso-
lute binding free energy that takes into account a diverse set of
drug-like molecules and a biologically relevant target currently
investigated for its therapeutic potential. Notably, a similar level
of accuracy was recently reported for a large set of molecules in
terms of their relative binding free energies.61 The reliability of
the absolute free energy calculations warrants their use in drug
discovery campaigns at least for fairly rigid drug targets such as
bromodomains.
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