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Development of a 3D QSPR model for adsorption of
aromatic compounds by carbon nanotubes: comparison
of multiple linear regression, artificial neural network
and support vector machine

Qiliang ‘Luke’ Wang,*a Onur G. Apul,b Pengfei Xuan,c Feng Luoc and Tanju Karanfilb

Adsorption coefficients of 39 aromatic compounds onto multi-walled carbon nanotubes have been

compiled. To understand the relationship between adsorption coefficients and physicochemical

properties of aromatic compounds, a 3D quantitative structure–property relationship (QSPR) model was

developed by the utilization of 3D molecular structures of 39 aromatic compounds. A Monte Carlo

computational algorithm was utilized to generate 3D molecular descriptors and physicochemical

properties for the QSPR model. Of the physicochemical descriptors: log Kow, number of nitrogen and

oxygen atoms and number of atoms in rings present positive correlation. However, the dipole moment

of the molecule and number of hydrogen bonds accepted by the solute present negative correlations.

In the model development process, three different learning approaches, multiple linear regression

(MLR), artificial neural network (ANN) and support vector machine (SVM), were used. The validation

results showed that SVM- and ANN-based models resulted in a better agreement between predicted

and measured values, with the coefficient of determination (R2) of 0.8317 and 0.7829, than the

MLR-based model with R2 of 0.5093.
1. Introduction

Carbon nanotubes (CNTs), since they were discovered, have
received extensive attention in the environmental research eld
due to their large surface area and well developed mesopores.1–4

Because of their hydrophobic properties, CNTs have exhibited a
strong adsorption capacity for a large quantity of organic
compounds (OCs), including polar/non-polar aliphatic and
aromatic OCs.5,6 Additionally, with production of CNTs
increased, well dened structure and relative uniform surfaces
compared to conventional activated carbons, CNTs have been
considered potential adsorbents for microorganisms, natural
organic matter (NOM), and toxins from water sources.7–10

Therefore, the adsorption mechanisms of CNTs are becoming
increasingly important to study. In addition, the adsorption
efficiency of CNTs is signicantly inuenced by the physico-
chemical properties of OCs, such as hydrophobicity, p–p

interaction, H-bonding donation/acceptance and electrostatic
interactions.2,11–13 Because physicochemical properties of OCs
are closely related to their structures, it is critical to develop a
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relationship between the potential adsorption of OCs and their
structural characteristics in order to predict the adsorption of
new compounds without experimentation and to understand
the adsorption mechanism.

The quantitative structure activity relationship (QSAR)
model was rst applied in the pharmaceutical industry in order
to minimize experimental work and predict drug metabolic
activity and toxicity based on chemical structures.14,15 Theoret-
ically, a QSAR model is a statistical model that correlates
chemical activity to a set of structural or property descriptors of
a chemical compound. These descriptors, including parameters
to account for hydrophobicity, topology, electronic properties,
and steric effects, are determined either empirically or
computationally.16 Most QSAR research focuses on compounds
with similar classes or structures, where predictions are built
from information on target compounds' properties obtained or
predicted from empirical one or two-parameter relation-
ships.17,18 However, QSAR models to predict OCs adsorbed by
CNTs from aquatic environments have received much less
attention.19 Recently, as the 3D structure analysis soware was
developed, three dimensional quantitative structure property
relationship (3D QSPR) model started to be considered as a
potential QSAR model;17 the 3D QSPR is a molecular modeling
approach based on 3Dmolecular structures used to generate 3D
molecular descriptors and physicochemical properties applied
with Monte Carlo simulations for statistical analysis.17,20
This journal is ª The Royal Society of Chemistry 2013
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Table 2 Oxygen content (%) and BET surface areas of selected MWCNT

Ref. Adsorbent
Oxygen
content (%)

BET surface area
(m2 g�1)

32 MWNT 8 <5 348
1, 32 and 33 MWNT 15 <5 174
32 MWNT 30 <5 107
32 MWNT 50 <5 95
34, 35 and 45 MWNT 10 0.20 357
34, 45 MWNT 20 0.90 126
34, 45 and 46 MWNT 40 0.02 86
45 MWNT 60 0.09 73
34, 35 and 45 MWNT 100 <5 58

RSC Advances Review

Pu
bl

is
he

d 
on

 1
8 

 2
01

3.
 D

ow
nl

oa
de

d 
on

 0
5.

11
.2

02
4 

15
:3

1:
36

. 
View Article Online
Conventionally, multiple linear regression (MLR) is used to
evaluate a QSAR model;17 however, recent research has
demonstrated the potential capacity of neural network for
assessing a QSAR model.21 Therefore, it is essential to introduce
and compare different evaluation approaches in QSAR model
development.

Articial neural network (ANN) is a machine learning
approach inspired by the human nervous system and a
nonlinear regression model, derived from a simplied concept
of the brain. The ANN consists of multiple layers of inter-
connected articial neurons22,23 and performs a nonlinear
relationship between a dependent variable and some indepen-
dent parameters. The ANN based QSAR models have several
advantages:24 rst, ANN models are better than other types of
models in terms of accuracy and predictive ability to model
nonlinear functions; second, a variety of ANNs are available
depending on the nature of the problem being studied.

The support vector machine (SVM) is another machine
learning approach that has been successfully applied to the
classication and regression problems.25 Compared to ANN, the
SVM possesses several advantages:26 (1) the SVM has a strong
theoretical background that provides a high generalization
capability to avoid local minima; (2) a solution from the SVM
can be quickly obtained by a standard algorithm; and (3) the
network topology does not need to be determined in advance.
Thus, the SVM has acquired extensive applications, for example,
drug and materials design, trace element analysis, and QSAR
analysis.26,27 In addition, to the best of our knowledge, there is
currently no SVM based 3D QSPR model development for
adsorption of OCs by CNTs. Although SVM has several above
advantages, it is still difficult to conclude which learning
approach is better between ANN and SVM; some researchers
demonstrated that ANN showed better performance in data
prediction, and some researchers presented that solutions
obtained by SVM were more robust with a smaller standard
error.28–31

Therefore, the aim of this study is to utilize 3D molecular
structure information to develop a QSPR model to interpret the
adsorptionmechanism of aromatic compounds onto CNTs. The
quantitative results obtained using MLR, ANN, and SVM are
compared from descriptive and predictive angles to better
understand which learning methodology gives more accurate
prediction.
Author's lab MWNT 0 164
Author's lab MWNT-SD 0.90 178
Author's lab MWNT-MD 2.90 127
Author's lab MWNT-LD 2.40 157
Author's lab MWNT-SL 5 163
Author's lab MWNT-ML 0.80 80
Author's lab MWNT-LL 4.70 301
Author's lab MWNT-S 2.70 192
5 MWNT 1030 2.76 148
5 MWNT 4060 0.72 74
36 MWNT 3.3 3.30 283
37 MWNT 8 <5 559
37 MWNT 20 <5 167
37 MWNT 30 <5 91
37 MWNT 50 <5 68
37 MWNT 15 1.52 181
37 MWNT 15A 3.92 279
2. Experimental section
2.1 Materials and methods

Rigorous literature review and laboratory studies were con-
ducted for collecting all available adsorption data for synthetic
OCs by multi-walled CNTs (MWCNTs).3,5,32–39 Since the majority
of these data was for aromatics, modeling effort was nalized to
focus on these OCs in the present study. Finally, 39 aromatic
compounds for 3D QSPRmodel development were selected. The
adsorption of these aromatic compounds has been tested with
various pristine MWCNTs.3,5,19,32–37,39 The adsorption results of
these aromatic compounds were treated as training dataset for
model development. The physicochemical properties from 3D
23926 | RSC Adv., 2013, 3, 23924–23934
structures of these 39 aromatic compounds and some charac-
terizations of MWCNTs are listed in Tables 1 and 2.

Independent of the training dataset, the data reported by Xia
et al.40 were treated as a validation testing dataset aer
removing nine common aromatic compounds with training
dataset (chlorobenzene, phenol, naphthalene, biphenyl,
2-chlorophenol, nitrobenzene, 2,4-cichlorophenol, 1,2,4-tri-
chlorobenzene, 2,4-dinitrotoluene) and one aliphatic
compound (hexachloroethane). Overall, 30 aromatic
compounds constituted the testing dataset. The physico-
chemical properties of these aromatic compounds are listed
in Table 3.

Single point adsorption coefficient (K ¼ Qe/Ce, where Qe is
solid phase equilibrium concentration and Ce is liquid phase
equilibrium concentration) of innite dilution (at an average of
0.2% of adsorbate aqueous solubility) of the aqueous solubility
of each adsorbate was obtained from the previous study.19 For
eliminating the surface area effect of MWCNTs, the adsorption
coefficients were normalized by specic surface area (ranging
from 58 to 559 m2 g�1, Table 2); and the logarithm of surface
area normalized adsorption coefficients (log KSA) was applied
for 3D QSPR model development.
2.2 QSPR model development

First, 2D molecular structure of aromatic compounds were
collected from the website of national library of medicine
(NLM) online resources (http://www.chem.sis.nlm.nih.gov/
chemidplus/).17 Then, Ligprep (Schrödinger, LLC, New York,
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Flow chart for the process of 3D QSPR model development.
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NY, 2011) was applied to transfer the 2D structure le to 3D
structure le with minimized molecular energy and various
possibilities for molecular chirality. A total number of 38
descriptors, including molecular descriptors and physico-
chemical properties, were produced by Qikprop for each of the
target aromatic compounds based on the accurate 3Dmolecular
les. Before building models, medicinal chemistry properties
and gas phase reaction related properties were eliminated from
the dataset; in addition, several additional predictors with high
correlation coefficient of linear relationship were considered to
keep one of them for model development (Table 1). At last,
Strike (Schrödinger, LLC, New York, NY, 2011) was used as the
main method to create an initial 3D QSPR model using MLR,
and descriptors were only selected if they could improve the
standard deviation of the regression and related to the aromatic
compounds adsorption from aqueous phase, and Fig. 1 is the
ow chart for this process. A Monte Carlo simulated annealing
protocol was used where at each step a random variable was
replaced with the best variable found by the forward selection
algorithm. The new model was tested via the metropolis criteria
using the regression standard deviation. The adsorbability can
be conducted by a multi-variable regression with an eqn (1) of
the form (where “a” and “b” are best-t coefficients):

log KSA ¼ a � molecule descriptor1
+ b � molecule descriptor2 +. (1)

The regression models were evaluated using the p-values: if
p-value is less than 0.05, at least one of the independent vari-
ables of the developed equation is useful in predicting the
dependent variable at 95% signicant level; additionally, the
signicance of selected individual variables was quantied by
individual p-values that are testing the coefficients of variables
being different from zero. The F-factor is used in regression
analysis to determine if the variances between the means of two
populations are signicantly different. In other word, the F-
statistic provides an indication of the lack of t of the data to the
estimated values of the regression. A strong relationship
between two variables results in a high F-ratio.
2.3 Methodology of ANN

The three-layer ANN with one input layer, one hidden layer and
one output layer was used in this 3D QSPR study. The number
needed in the intermediate layer was optimized by an iterative
process. The back-propagation algorithmwas used to obtain the
connection weights, which represents the degree of inuence
between interconnected neurons. ANN training was accom-
plished if the error function is minimized below a predened
threshold. The relative importance v of input variable can be
obtained by:
23928 | RSC Adv., 2013, 3, 23924–23934
vð%Þ ¼
XnH
j¼1

0
BB@

ivjXnv
k¼1

ikj

oj

1
CCA
,Xnv

i¼1

2
664X

nH

j¼1

0
BB@

ivjXnv
k¼1

ikj

oj

1
CCA
3
775 (2)

eqn (2) was used with the absolute values of connection weights
in order to partition the sum of effects on the output layer. In this
equation, nv is the number of input neurons, nH is the number of
hidden neurons, oj is the hidden-output layer connection weight
values, and ij is the input-hidden connection weight values. It
gives the relative importance or distribution of all output weights
attributable to the given independent input variables.

2.4 Methodology of SVM

The SVM maps the input vector x onto a very high-dimensional
feature space F via a nonlinear mapping F and then to perform
linear regression in the feature space. Therefore, regression
approximation addresses the problem of estimating a function
based on a given dataset G ¼ {(xi, di)}

l
i¼1 (xi is input vector, di is

the desired value). SVM approximates the function in the
following form

f ðxÞ ¼
Xl

i¼1

wi$4iðxÞ þ b (3)

where w is a vector in F, {fi(x)}
l
i¼l is the set of mappings of input

variables, and b is coefficient. w and b are estimated by mini-
mizing the regularized risk function R(C)

RðCÞ ¼ C
1

N

XN
i¼1

L3ðdi; yiÞ þ 1

2
kwk2 (4)

where

L3ðdi; yiÞ ¼
�
|d � y|� 3 ð|d � y|$ 3Þ
0 otherwise

(5)

3 is a prescribed parameter.

The rst term, C
1
N

XN
i¼1

L3ðdi; yiÞ, of function (4) is called

empirical error (risk) and it is calculated by the 3-insensitive loss
function (5). This sets an 3 range so that if predicted result is
within the range, the loss is zero, while if predicted point is
outside the range, the loss is the difference between the predicted
result and the radius 3 of the range. C is a penalty parameter,
which is a regularized constant to determine the trade-off
between training error and model atness. The second term of
the function (4), 1/2kwk2, is the regularized term,whichwillmake
a function as at as possible, thus playing role of controlling the
function capacity. The introduction of the x and x* positive slack
variables results in eqn (6), to the following constrained function:

Minimize RSVMs

�
u; x*

� ¼ 1

2
kuk2 þ C

Xn
i¼1

�
xi þ x*i

�
(6)
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Fig. 2 Progress in R2 as the number of independent variables increases during
the QSPR model development.
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in eqn (6), i stands for the data sequence, with i ¼ 1 being the
earliest observation. Decision function (7) takes the form below,
aer introducing the Lagrange multipliers and exploiting the
optimality constraints:

f
�
x; a*i

� ¼Xn
i¼1

�
ai � a*i

�
Kðx; xiÞ þ b (7)

in eqn (7), ai and a*i are the introduced Lagrange multipliers.
With the utilization of the Karush–Kuhn–Tucker (KKT) condi-
tions, only a limited number of coefficients will not be zero
among ai and a*i . The related data points could be referred to as
the support vectors. In eqn (7), K refers to the kernel function,
including the linear, polynomial, splines and radial basis
function.

With respect to the support vector regression, the radial
basis function (RBF) which is broadly employed is the Gaussian
radial basis function (8):

k
�
xi; xj

� ¼ exp

 
� kxi � xjk2

2g2

!
(8)

where g is the width parameter.
The predictive precision of the models for external validation

data were checked by root mean squared error (RMSE) function
(9). RMSE is calculated by taking the square root of the squared
residuals. Residuals are the differences between predicted
values and actual values. Partial residual plots were generated
by plotting each independent variable against the residuals.
RMSE values were used to quantify the external validation
strength of the predictions.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðlog Kobs � log KcalcÞ2

n

s
(9)

3. Results and discussion
3.1 3D QSPR model development using MLR

In order to construct a high quality 3D QSPR model, MLR
analysis was performed on 39 aromatic compounds selected
from previous studies. In addition, 13 physicochemical prop-
erties, related to aromatic compounds adsorption from aqueous
phase, of 3D structure were obtained from Qikprop (Maestro,
version 9.2, Schrodinger, LLC, New York, 2011). QSPR models
with 3D structure properties were constructed using a forward
selection algorithm embedded in the Strike program (Maestro,
version 9.2, Schrodinger, LLC, New York, 2011); additionally,
30 aromatic compounds investigated by Xia et al. were used for
model validation.40

Because of the moderate size of the dataset, an internal
validation method, leave-one-out cross-validation (LOOCV), was
Table 4 Parameters of MLR statistics

Descriptors log Kow Dipole AccptHB

T 4.93 2.59 3.49
F
P

This journal is ª The Royal Society of Chemistry 2013
applied. This LOOCV approach was used to verify the choice of
model. In LOOCV, one observation at a time is removed from
the dataset, and the remaining observations are used succes-
sively to predict the deleted observation.

As expected, R2 represents the linearity of regression analysis
and the extent of consistency between the experimental data and
model predictions. The relationship between R2 and dependent
parameters in 3D QSPR models is shown in Fig. 2. The program
recommends using a dataset with at least ve times as many
molecules as there are independent descriptors (Schrödinger,
LLC, New York, NY, 2011). Since we have 39 compounds in
training dataset, we have to x 7 variables as maximum.41–43

However, the 3DQSPRmodels didnot improvemuchbeyondve
descriptors. Therefore, the optimum result obtained by Strike
with forward selection algorithm is given by eqn (10).

log KSAN ¼ �4.029 + 0.5409 � (log Kow) + 0.7504

� (#NandO) + 0.1525 � (#ringatoms)�0.1657

� (dipole) � 0.5888 � (accptHB) (10)

n ¼ 39, R2 ¼ 0.7601

The ve selected parameters that produced the optimum
correlation between the predicted and observed relative
adsorbabilities were evaluated in the Strike program; the
selected parameters (F and P) are shown in Table 4. If 5 < F < 33
and P < 0.05, then the model was construed as signicant, and T
value associated with each descriptors relating to the signi-
cance of the corresponding parameter (Table 4).
#NandO #ringatoms

5.06 4.85
20.9
2.27 � 10�9

RSC Adv., 2013, 3, 23924–23934 | 23929
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Fig. 3 Box and whisker plots for the 3D QSPR descriptors: P and P0 represent dipole values in training and testing dataset, B and B0 represent accptHB values in training
and testing dataset, Kow and K 0

ow represent log Kow values in training and testing dataset, NO and NO0 represent NandO values in training and testing dataset, and R
and R0 represent ringatom values in training and testing dataset.
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All the descriptors in the above equation are dened in Table
5: log Kow is the octanol/water partition coefficient, #NandO is
the number of nitrogen and oxygen atoms, #ringatoms is the
number of atoms in rings of a ring molecule, dipole is the
computed dipole moment of the molecule, and accptHB is
estimated number of hydrogen bonds that would be accepted by
the solute from water molecule in an aqueous solution.

The values of descriptors for the aromatic compounds in the
validation (testing) dataset are shown in Table 3; additionally,
the range of values for the compounds in the training dataset
was comparable with the range of values for the compounds in
the testing dataset (Fig. 3). The predicted values were compared
with the experimentally obtained log KSA values, as presented in
Fig. 4; the R2 for the validation set was calculated as 0.5093. The
following equation is the regression for testing dataset:
Fig. 4 Comparison between the experimental log KSA and model predicted
log KSA using MLR, ANN and SVM for testing dataset.
log KSA predicted ¼ (0.7112 � 0.1319)

log KSA experimental � 0.7425 (11)

n ¼ 30, R2 ¼ 0.5093

Based on eqn (10), we can attempt to explain mechanism of
adsorption of aromatic compounds by MWCNTs. Log Kow

represents the hydrophobic properties of aromatic compounds;
compounds with large log Kow values will tend to participate
more easily into a hydrophobic phase than a hydrophilic phase
23930 | RSC Adv., 2013, 3, 23924–23934
(water phase). Thus, the MWCNTs with hydrophobic surface
can adsorb more aromatic compounds with large values of
log Kow, resulting in large values of log KSA. This is the reason
that log Kow has a positive signicance for prediction of
aromatic compounds adsorption by MWCNTs.
This journal is ª The Royal Society of Chemistry 2013
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For #NandO, in the database of 39 compounds, 34 of them
contain nitrogen and oxygen atoms; within these 34
compounds, as the number of nitrogen and oxygen atoms
increases, the molecular size of these compounds also
increases. These molecules include more hydrophobic groups
(–NO2), benzene rings and more branch chains with nitrogen
atoms added, and the lengths of branch chains increases. These
added properties decrease the solubility of aromatic
compounds and increase the adsorption of aromatic
compounds onto MWCNTs, which results in the positive
correlation of #NandO with the adsorption descriptor.

In terms of #ringatoms, because the selected compounds are
aromatic compounds, the number of atoms in rings is related to
the number of aromatic ring in the compounds, i.e. a high
number of atoms in rings represent more aromatic rings in the
compounds. More aromatic rings in an aromatic structure
increase the molecule weight/volume and p–p bond of selected
aromatic compounds. Therefore, the positive effect of #ringa-
toms directly decreases the solubility of aromatic compounds
and increases the adsorption of aromatic compounds onto
MWCNTs.

For dipole, molecules are said to be polar because they
possess a permanent dipole moment. A highly polar molecule
leads to a large dipole moment. According to “like dissolves
like” rule, a molecule with a large dipole moment has more
solubility in water, which directly decreases adsorption of
aromatic compounds onto MWCNTs in aqueous solution;
therefore, a negative correlation of dipole of aromatic
compounds adsorbed by MWCNTs was obtained.

Higher accptHB values represent the higher capacity of
solute to accept hydrogen bonds fromwater molecules. In terms
of hydration of the solute, strong hydrogen bond accepting
ability of solute supports hydration by the strong hydrogen
bond donating water (hydrogen bond donor of water is 1.17).44

This favors solubility in water and decreases the tendency of
adsorption of aromatic compounds onto MWCNTs.
3.2 3D QSPR models development using ANN

The ANN approach was applied by including the indicators as
input neurons in eqn (2) and with the output neuron log KSA.
The ANN structure was optimized by considering the statistical
parameters of the regression between the experimental and
predicted log KSA values and the training time. The nal
Fig. 5 Structure of artificial neural network.

This journal is ª The Royal Society of Chemistry 2013
structure was composed of three neurons in the hidden layer
and hyperbolic tangent functions as transfer function (Fig. 5).

The 39 aromatic compounds in the training dataset and the
same subset of descriptors with MLR were used to build the
ANN model; then, in the testing step, the 30 aromatic
compounds were used to validate the generated ANN model.
Fig. 4 presents the predicted log KSA values as a function of
experimental log KSA values. The following equation is the
regression for testing dataset:

log KSA predicted ¼ (0.4126 � 0.04104)

log KSA experimental � 0.9173 (12)

n ¼ 30, R2 ¼ 0.7831

In the complicated nonlinear relationships between model
inputs and outputs, it is difficult to know which of the ve
physical properties in the input layer signicantly inuences
the simulation results. As well, the R2 for predicting aromatic
compounds adsorption coefficients in the ANN for each neuron
is hard to describe. The integrated result of ANN in this study
has outperformed the multi-regression, which could be the
reason the neural network method has better predicted the
adsorption of aromatic compounds onto MWNTs. Therefore, to
predict reasonable estimates for the adsorption of aromatic
compounds by MWCNTs, ANN with suitable structure may be
useful tools.

3.3 3D QSPR models development using SVM

Aer the development of 3D QSPR models using MLR and ANN,
SVM was used to build a third prediction model. The LOOCV
method implied in SVM was used to perform parameter selec-
tion. Similar to other multivariate statistical models, the
performances of SVM for regression depend on the combina-
tion of several parameters, such as the kernel function type, the
capacity parameters C, 3 of the 3-insensitive loss function and its
corresponding parameters. The 39 aromatic compounds in the
training dataset and the same subset of descriptors with MLR
and ANN were used to build SVM model; additionally, the same
30 aromatic compounds were used to validate the generated
SVM model. The predicted log KSA values as a function of
experimental log KSA values were presented in Fig. 4 and eqn
(13) presents the regression for testing dataset.

log KSA predicted ¼ (0.4679 � 0.04)

log KSA experimental � 0.8342 (13)

n ¼ 30, R2 ¼ 0.8304

The corresponding parameter, i.e. g of the kernel function
(eqn (8)), has a very close relation with the SVM performance
and training time, and signicantly inuence the number of
RSC Adv., 2013, 3, 23924–23934 | 23931
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Table 5 Descriptors and properties generated by QikProp used for QSPR model development

Descriptor/property Explanation

MW Molecular weight of the molecule
SASA Total solvent accessible surface area in square angstroms
FOSA Hydrophobic component of the SASA (saturated carbon and attached hydrogen)
FISA Hydrophilic component of the SASA (SASA on N, O, and H on heteroatoms)
PISA p (carbon and attached hydrogen) component of the SASA
WPSA Weakly polar component of the SASA (halogens, P, and S)
PSA Van der Waals surface area of polar nitrogen and oxygen atoms
DonorHB Estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution
AccptHB Estimated number of hydrogen bonds that would be accepted by the solute fromwatermolecules in an aqueous solution
Dipole Dipole moment of the molecule
#NandO Number of nitrogen and oxygen atoms
#ringatoms Number of atoms in rings
#nonHatm Number of heavy atoms (nonhydrogen atoms)
log Kow Octanol/water partition coefficient

RSC Advances Review

Pu
bl

is
he

d 
on

 1
8 

 2
01

3.
 D

ow
nl

oa
de

d 
on

 0
5.

11
.2

02
4 

15
:3

1:
36

. 
View Article Online
support vectors. Regarding g, it controls the amplitude of the
RBF function and accordingly controls the SVM generalization
ability. With respect to the capacity parameter C (eqn (6)), it
controls the trade-off between themarginmaximization and the
training error minimization. Low value of C will place insuffi-
cient stress on tting the training data, and high value of C will
make algorithm over-t the training data. The 3 of the 3-insen-
sitive parameters was investigated. The 3-insensitive parameter
Table 6 Comparison of the predictive ability of MLR, ANN and SVM

No. Compounds
Experimental
value (log KSA)

1 Acetophenone �2.11
2 Azobenzene 0.35
3 Benzonitrile �2.33
4 Benzyl alcohol �3.27
5 Bromobenzene �1.87
6 3-Bromophenol �1.58
7 4-Chloroacetophenone �1.09
8 4-Chloroanisole �1.30
9 2-Chloronaphthalene 0.36
10 3-Chlorophenol �1.75
11 4-Chlorotoluene �1.55
12 m-Dichlorobenzene �1.72
13 ortho-Dichlorobenzene �1.81
14 p-Dichlorobenzene �1.86
15 3,5-Dimethylphenol �1.88
16 Ethyl benzoate �1.23
17 Ethylbenzene �2.18
18 4-Ethylphenol �1.75
19 4-Fluorophenol �2.69
20 Iodobenzene �1.49
21 Isophorone �2.36
22 Methyl benzoate �1.67
23 3-Methylbenzyl alcohol �2.52
24 Methyl 2-methylbenzoate �1.25
25 1-Methylnaphtalene �0.48
26 3-Methylphenol �2.29
27 4-Nitrotoluene �0.93
28 Propylbenzene �1.61
29 Phenylethyl alcohol �2.83
30 p-Xylene �2.11

RMSE
R2

23932 | RSC Adv., 2013, 3, 23924–23934
can prevent the entire training set from meeting boundary
conditions, which will provide the sparsity possibility in the
dual formulation solution. The optimum 3 value is strongly
affected by the noise type present in the data; however, the noise
type is usually unknown. As a consequence, the best choices
regarding the g, 3, and C values were 0.73, 3 and 0.16 for the
optimal model; the predicted results of the optimal SVM were
shown in Fig. 4.
Predicted value
by MLR

Predicted value
by ANN

Predicted value
by SVM

�3.34 �1.99 �1.93
0.19 �0.20 �0.45

�3.34 �1.96 �1.86
�3.10 �2.18 �2.28
�1.78 �1.65 �1.67
�1.87 �1.63 �1.69
�2.78 �1.75 �1.75
�1.73 �1.59 �1.64
�0.78 �0.88 �0.53
�2.00 �1.67 �1.72
�1.74 �1.52 �1.44
�1.54 �1.46 �1.36
�1.82 �1.48 �1.35
�1.25 �1.50 �1.51
�1.80 �1.75 �1.89
�1.88 �1.51 �1.54
�1.47 �1.60 �1.66
�1.67 �1.66 �1.797
�2.23 �1.93 �2.09
�1.74 �1.55 �1.50
�3.46 �1.93 �1.81
�2.15 �1.69 �1.7
�2.80 �2.01 �2.12
�1.84 �1.47 �1.50
�1.45 �1.34 �1.14
�1.94 �1.89 �2.09
�1.37 �1.43 �1.36
�1.17 �1.40 �1.34
�2.95 �2.09 �2.20
�1.42 �1.60 �1.67
0.6498 0.5016 0.4543
0.5093 0.7829 0.8317
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For 30 testing aromatic compounds, the experimental and
predicted log KSA values in three algorithms are listed in Table
6. Fig. 4 exhibits the experimental versus predicted values for the
testing sets with the SVM method. The RMSE value of the SVM
model for the testing data set was lower than those of the MLR
and ANN models (Table 6); however, the R2 given by the SVM
model was higher than those of the MLR and ANN models
(Table 6). Results in Table 6 conrm the better prediction ability
of SVM > ANN > MLR to represent the adsorption data, indi-
cated by a higher R2 and lower RMSE when the test aromatic
compounds are included in the testing database. Compared
with the results obtained fromMLR and ANN, SVM provides the
most satisfactory results. The optimized values of g, 3, and C
that were used in SVM development gave a reason why SVM
provides better prediction.
4. Conclusion

In the present study, three learning approaches (MLR, ANN and
SVM) were applied to construct a 3D QSPR model between
physicochemical properties of selected aromatic compounds
and their adsorption coefficients onto MWCNTs. The developed
quantitative relation model indicated the signicant relation-
ship between adsorption coefficients and ve descriptors. The
adsorption of aromatic compounds by MWCNTs is positively
related to log Kow, #NandO and #ringatoms, and negatively
related to dipole and accptHB. The results obtained by SVM
were compared with the results obtained by MLR and ANN; the
comparison demonstrated that SVM was more powerful in the
prediction of the adsorption of aromatic compounds by
MWCNTs, followed by ANN and MLR. However, the results of
SVM and ANN are close and both are better than the result of
MLR, which is because the MLR performs linear regression
between log KSA and physicochemical properties. Our results
showed that the relation between log KSA and physicochemical
properties should be nonlinear. A suitable model with high
statistical quality and low prediction errors was eventually
derived. The prediction results indicated that there was a good
prospect for SVM application to the QSAR model development.
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