Issue 18, 2025

Crystallization-induced highly efficient phosphorescence in metal-free organic phosphors

Abstract

Room-temperature phosphorescence (RTP) emissions of metal-free organic materials have garnered considerable research attention from the fields of organic electronics and bioelectronics. However, achieving ultralong phosphorescence lifetimes and high quantum efficiencies of pure organic materials without relying on the heavy-atom effect remains challenging. Herein, a heavy-metal-free organic compound—1,4-phenylenebis((4-(9H-carbazol-9-yl)phenyl)methanone) (BCzPMB)—exhibiting two types of crystal structures with highly efficient afterglow features was synthesized. In these crystals, BCzPMB-DCM exhibited a high phosphorescence quantum efficiency of 9.1% and a lifetime of 368.7 ms. BCzPMB-N showed a phosphorescence quantum efficiency of 5.7% and a lifetime of 404.9 ms. Experimental and theoretical studies attributed this persistent RTP emission to intermolecular interactions, including π–π and intermolecular hydrogen bonding interactions. Additionally, the luminescence behavior of BCzPMB-DCM resembled that of BCzPMB-N after treatment with n-hexane, and a visual anticounterfeiting application instance was successfully demonstrated. Overall, the results of this study are anticipated to provide valuable insights for advancing the applications of organic luminogens with RTP properties.

Graphical abstract: Crystallization-induced highly efficient phosphorescence in metal-free organic phosphors

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
31 Dec 2024
Accepted
25 Mar 2025
First published
27 Mar 2025

CrystEngComm, 2025,27, 2931-2936

Crystallization-induced highly efficient phosphorescence in metal-free organic phosphors

H. Xiao, H. Ma, J. Wang, Z. An and Z. Guo, CrystEngComm, 2025, 27, 2931 DOI: 10.1039/D4CE01323A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements