A Review on Covalent Organic Frameworks: Exploration of Their Growing Potential as Porous Materials in Photocatalytic Applications

Abstract

Photocatalysis powered by unlimited solar energy is an effective strategy to resolve energy and environmental issues. To achieve an efficient photocatalytic system, photocatalysts need to be highly crystalline and porous with excellent photostability under extreme conditions. Covalent organic framework (COF) has shown immense potential for photocatalytic application due to its unique structure, electronic, and photophysical characteristics. COF possesses a crystalline porous network with light absorption capabilities and excellent stability. Functionalized COFs can be developed through organic unit variation to obtain broader absorption, narrow bandgap, effective charge separation, and transportation. Furthermore, high photocatalytic efficiency can be achieved by heterostructure formation through anchoring or post-synthetic modification. Our review is focused on the recent advancement of COF as photocatalysts for various photocatalytic applications. The exploration commences by emphasizing the topological design, linkage chemistry, and functionalization of COFs, underscoring principles and requirements for high photocatalytic efficiency. It provides a deep dive into COF capabilities in different photocatalytic applications, covering areas such as hydrogen and oxygen evolution, carbon dioxide reduction, organic transformation, and organic pollutant degradation. Finally, it summarizes the pivotal points that need demanding attention and outlines future avenues, to offer fresh perspectives and contribute to revolutionary innovations in this rapidly evolving field.

Article information

Article type
Review Article
Submitted
12 Мау. 2024
Accepted
16 Там. 2024
First published
19 Там. 2024

Inorg. Chem. Front., 2024, Accepted Manuscript

A Review on Covalent Organic Frameworks: Exploration of Their Growing Potential as Porous Materials in Photocatalytic Applications

K. Prakash, R. Deka and S. M. Mobin, Inorg. Chem. Front., 2024, Accepted Manuscript , DOI: 10.1039/D4QI01480D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements