Anti-amyloidogenic amphipathic arginine-dehydrophenylalanine spheres capped selenium nanoparticles as potent therapeutic moieties for Alzheimer's disease†
Abstract
Aggregation of both amyloid beta (Aβ) peptide and hyperphosphorylated tau proteins is the major pathological hallmark of Alzheimer's disease (AD). Moieties that carry anti-amyloidogenic potency against both of the aggregating entities are considered to be promising drug candidatures for the disease. In the current work, we have synthesized amphipathic dipeptide vesicle-templated selenium nanoparticles (RΔF-SeNPs) as potential entities to combat AD. We have investigated and established their anti-amyloidogenic activity against different peptide-based amyloid models, such as the reductionist model based on the dipeptide phenylalanine–phenylalanine (FF) derived from Aβ; a model based on the hexapeptide Ac-PHF6 (306VQIVYK311) derived from tau protein; and the full-length Aβ42 polypeptide-based model. We also evaluated the neuroprotective characteristics of RΔF-SeNPs against FF, Ac-PHF6, and Aβ42 fibril-induced toxicity in neuroblastoma, SH-SY5Y cells. RΔF-SeNPs further exhibited neuroprotective effects in streptozotocin (STZ) treated neuronal (N2a) cells carrying AD-like features. In addition, studies conducted in an intra-cerebroventricular STZ-instigated rat model of dementia revealed that RΔF-SeNP-treated animals showed improved cognitive activity and reduced Aβ42 aggregate burden in brain tissues as compared with the STZ-treated group. Moreover, in vivo brain distribution studies conducted in animal models additionally demonstrated the brain-homing ability of RΔF-SeNPs. All together, these studies supported the potency of RΔF-SeNPs as efficient and propitious disease-modifying therapeutic agents for combating AD.
- This article is part of the themed collection: Celebrating International Women’s day 2024: Women in Nanoscience