Flexible transparent electrodes based on metallic micro–nano architectures for perovskite solar cells
Abstract
With the development of lightweight and flexible electronics, flexible transparent electrodes (TEs) have attracted huge attention in both academia and industry, and play a central role in high-performance flexible electronics. As a kind of emerging conducting material for TEs, metallic micro–nano architectures (MMNAs) possess both low sheet resistance and high optical transmittance. In addition, the high flexibility and low-cost solution processing make MMNAs promising candidates to replace the traditional conductive metal oxides, which suffer from the high-cost fabrication process and low conductivity on flexible substrates. In this review, we summarize the recent progress in flexible TEs based on MMNAs, as well as the comparison to other conducting materials, such as conducting polymers, graphene, carbon nanotubes, etc. Specially, we highlight the applications of flexible TEs based on MMNAs in perovskite solar cells (PSCs), including inverted PSCs, conventional PSCs, and semi-transparent PSCs. Finally, the challenges and prospects in this field are proposed.
- This article is part of the themed collections: Journal of Materials Chemistry C Recent Review Articles and Special issue in honour of Daoben Zhu