Issue 37, 2019

Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster

Abstract

Iron–sulfur clusters are exceptionally tuneable protein cofactors, and as one of their many roles they are involved in biological responses to nitrosative stress. Both iron–sulfur proteins and synthetic model clusters are extremely sensitive to nitrosylation, tending towards rapid multi-step reaction and cluster degradation. Reaction of protein-bound iron–sulfur clusters with nitric oxide can be stopped at partial nitrosylation in vivo, and repair of protein-bound nitrosylated clusters is possible in the cellular environment. We have used a combination of infrared, EPR, and UV-visible spectroscopies to show that a model [4Fe4S] cluster-containing protein, A. ferroxidans high potential iron–sulfur protein (HiPIP), reacts with NO to give a product mixture dominated by Roussin's Black Salt (RBS) and Roussin's Red Ester (RRE) species. We have shown that O2 plays a critical role in controlling the major product of nitrosylation, with RBS-like products favoured under strictly anaerobic conditions and RRE favoured in the presence of trace O2. Moreover, addition of trace O2 to anaerobically nitrosylated samples induces conversion of RBS-like products to RRE. These findings may have implications for mechanisms of iron–sulfur cluster repair following nitrosative stress, suggest a crucial role for trace O2, and provide an important link between nitrosylation chemistry of iron–sulfur proteins and the well-established reactivity of synthetic iron–sulfur clusters.

Graphical abstract: Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster

Supplementary files

Article information

Article type
Paper
Submitted
01 Нау. 2019
Accepted
14 Там. 2019
First published
09 Қыр. 2019
This article is Open Access
Creative Commons BY license

Dalton Trans., 2019,48, 13960-13970

Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster

D. B. Grabarczyk, P. A. Ash, W. K. Myers, E. L. Dodd and K. A. Vincent, Dalton Trans., 2019, 48, 13960 DOI: 10.1039/C9DT00924H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements