Predicting global scale exposure of humans to PCB 153 from historical emissions†
Abstract
Predicting human exposure to an environmental contaminant based on its emissions is one of the great challenges of environmental chemistry. It has been done successfully on a local or regional scale for some persistent organic pollutants. Here we assess whether it can be done at a global scale, using PCB 153 as a test chemical. The global multimedia fate model BETR Global and the human exposure model ACC-HUMAN were employed to predict the concentration of PCB 153 in human milk for 56 countries around the world from a global historical emissions scenario. The modeled concentrations were compared with measurements in pooled human milk samples from the UNEP/WHO Global Monitoring Plan. The modeled and measured concentrations were highly correlated (r = 0.76, p < 0.0001), and the concentrations were predicted within a factor of 4 for 49 of 78 observations. Modeled concentrations of PCB 153 in human milk were higher than measurements for some European countries, which may reflect weaknesses in the assumptions made for food sourcing and an underestimation of the rate of decrease of concentrations in air during the last decades. Conversely, modeled concentrations were lower than measurements in West African countries, and more work is needed to characterize exposure vectors in this region.
- This article is part of the themed collections: Best Papers 2018 – Environmental Science: Processes & Impacts and Editors Choice: Planetary Health