CO2 capture under humid conditions in metal–organic frameworks
Abstract
Metal–organic frameworks (MOFs) are one of the most promising candidates for CO2 capture due to their sorption selectivity towards CO2. The optimisation of the physical–chemical interactions between MOFs and CO2 molecules is the key to further amplification of CO2 capture. An emerging technology for CO2 capture is the construction of hybrid adsorbent MOFs via confinement of water inside the pores. This review article describes the recent progress in this field. Indeed, the pre-adsorption of small quantities of water within the micropores of MOF materials (constructed with hydroxo functional groups, μ2-OH) provides a positive impact on the overall CO2 capture. We anticipate that the current review article can offer useful information on the significant developments made for the enhancement of CO2 capture by confining water (and other solvents) within the pores of MOFs, which is a very promising technology for real-world applications, where MOF materials could be capable of serving as next-generation CO2 capture systems.
- This article is part of the themed collections: Functional Open framework materials and 2017 Materials Chemistry Frontiers Review-type Articles