New 1,4,7-triazacyclononane-based functional analogues of the Fe/Cu active site of cytochrome c oxidase: structure, spectroscopy and electrocatalytic reduction of oxygen

(Note: The full text of this document is currently only available in the PDF Version )

James P. Collman, Reinhold Schwenninger, Miroslav Rapta, Martin Bröring and Lei Fu


Abstract

Two new covalently linked functional model compounds for the Fea3/CuB active sites of heme-copper oxidases have been prepared and characterized by novel synthetic methodologies; the X-ray structure of the Zn form and the electrocatalytic reduction of O2 by the Fe/Cu forms are reported.


References

  1. S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 96, 2889 CrossRef CAS.
  2. M. Wikström, Nature, 1977, 266, 271 CAS.
  3. S. Iwata, C. Ostermeier, B. Ludwig and H. Michel, Nature, 1995, 376, 660 CrossRef CAS.
  4. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Sinzawa-Itoh, R. Nakashima, R. Yaono and S. Yoshikawa, Science, 1995, 269, 1069 CrossRef CAS; T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono and S. Yoshikawa, Science, 1996, 272, 1136 CAS.
  5. For Fe/Cu complexes with a covalently attached Cu binding site see: V. Bulach, D. Mandon and R. Weiss, Angew. Chem. Int. Ed. Engl., 1991, 5, 572 Search PubMed; T. Sasaki and Y. Naruta, Chem. Lett., 1995, 650 CrossRef; J. O. Baeg and R. H. Holm, Chem. Commun., 1998, 571; T. Sasaki, N. Nakamura and Y. Naruta, Chem. Lett., 1998, 351 RSC; F. Tani, Y. Matsumoto, Y. Tachi, T. Sasaki and Y. Naruta, Chem. Commun., 1998, 1731 CrossRef CAS.
  6. T. Kitagawa and T. Ogura, Prog. Inorg. Chem., 1997, 45, 431; A. Sucheta, K. E. Georgiadis and Ó. Einarsdóttir, Biochemistry, 1997, 36, 554 CrossRef CAS; S. Yoshikawa, Curr. Opin. Struct. Biol., 1997, 7, 574 CrossRef CAS; S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki and T. Tsukihara, Science, 1998, 280, 1723 CrossRef CAS.
  7. J. P. Collman, L. Fu, P. C. Herrmann and X. Zhang, Science, 1997, 275, 949 CrossRef CAS; J. P. Collman, Inorg. Chem., 1997, 36, 5145 CrossRef CAS; J. P. Collman, L. Fu, P. C. Herrmann, Z. Wang, M. Rapta, M. Bröring, R. Schwenninger and B. Boitrel, Angew. Chem., 1998, in press Search PubMed.
  8. J. P. Collman, M. Bröring, L. Fu, M. Rapta, R. Schwenninger and A. Straumanis, J. Org. Chem., 1998, 63, 8082 CrossRef CAS; J. P. Collman, M. Bröring, L. Fu, M. Rapta and R. Schwenninger, J. Org. Chem., 1998, 63, 8084 CrossRef CAS.
  9. Iron(II)–porphyrin 3b: MS(LSIMS+): m/z 1152.3 (MH+) for C67H60N12O4Fe. UV–VIS (MeCN): λmax 445 (Soret), 565 nm. 1H NMR (CDCl3): δ 48–54 (four broad peaks characteristic of β-pyrrolic protons on a paramagnetic five-coordinate iron (S= 2) porphyrin with α3β symmetry. 1H NMR (CDCl3 under CO atmosphere, axial ligand resonances only): δ 6.15(d, 1H), 5.22(m, 1H), 1.52(d, 1H), 1.37(s, 1H); Iron(II)–porphyrin 4b: MS(LSIMS+): m/z 1204.3 (MH+) for C70H61N13O4Fe. UV–VIS (MeCN): λmax 444 (Soret), 566 nm. 1H NMR (CDCl3): δ 48–54 (m, see above); 1H NMR (CDCl3 under CO atmosphere, axial ligand resonances only): δ 7.24(d, 1H), 6.95(m, 1H), 6.62(d, 1H), 4.68(s, 1H), 3.62(s, 2H), 3.37(s, 1H), 2.05(s, 1H), 2.31(s, 1H). Full analysis by 1D and 2D 1H NMR spectroscopy of Zn(II) and Fe(II) complexes 3 and 4 will be published elsewhere.
  10. MS (LSIMS+): m/z 1224.9 (MH+) for C68H60N12O4ZnCu (for Zn/Cu complex 5a); m/z 1274.1 for C70H61N13O4ZnCu (for Zn/Cu complex 6a); m/z 1217.2 (MH+) for C68H60N12O4FeCu (for Fe/Cu complex 5b); m/z 1266.3 for C70H61N13O4FeCu (for Fe/Cu complex 6b). The spectra match the calculated isotope distributions exactly.
  11. Y. Sun, E. A. Martell and M. Tsutsui, J. Heterocycl. Chem., 1986, 23, 561 CrossRef CAS.
  12. Crystal data: ZnC67H60N12O4·3CHCl3, M = 1520.80, triclinic, space group P[1 with combining macron], a= 13.3435(8), b= 13.5214(8), c= 20.850(1)Å, α= 103.096(1), β= 91.287(1), Γ= 111.723(1)°, V= 3380.1(3)Å3, Z= 2, Dc= 1.494 g cm–3, T=– 2146 °C, µ= 0.779 mm–1, R(Rw)= 0.098(0.112). All C atoms have been refined isotopically. CCDC 182/1090. See http://www.rsc.org/suppdata/cc/1999/137/ for crystallographic files in .cif format.
  13. J. P. Collman, P. C. Herrmann, L. Fu, T. A. Eberspacher, M. Eubanks, B. Boitrel, P. Hayoz, X. Zhang, J. I. Brauman and V. W. Day, J. Am. Chem. Soc., 1997, 119, 3481 CrossRef CAS and references therein.
  14. (a) T. Geiger and F. C. Anson, J. Am. Chem. Soc., 1981, 103, 7489 CrossRef; (b) J. Koutecky and V. G. Levich, Zh. Fiz. Khim., 1956, 17, 203 Search PubMed; (c) Half-wave potentials (vs. SSCE) for the reduction of O2 in air-saturated phosphate buffer (pH = 7) at a graphite disk electrode coated with catalyst and rotated at 200 rpm are –95 and –50 mV for 5b and 6b, respectively. Number of electrons involved in the reduction of O2 as estimated from the slopes of Koutecky–Levich plots14b are napp= 3.89 for 5b and napp= 3.92 for 6b.
Click here to see how this site uses Cookies. View our privacy policy here.