Model systems for flavoenzyme activity: aromatic stacking in sol-gel matrices

(Note: The full text of this document is currently only available in the PDF Version )

Michael D. Greaves, Trent H. Galow and Vincent M. Rotello


Abstract

Silicate matrices effectively replicate both the isolation and preorganization found in the active sites of flavoenzymes.


References

  1. D. J. Cram, Nature, 1992, 356, 29 CrossRef CAS; D. J. Cram, R. Jaeger and K. Deshayes, J. Am. Chem. Soc., 1993, 115, 10 111 CrossRef CAS; R. Breslow, Acc. Chem. Res., 1995, 28, 146 CrossRef CAS; N. Branda, R. Wyeler and J. Rebek, Science, 1994, 263, 1222; R. G. Chapman, G. Olovsson, J. Trotter and J. C. Sherman, J. Am. Chem. Soc., 1998, 120, 6252 CrossRef CAS For examples of molecular imprinting, see: B. Santora, A. Larsen and M. Gagne, Organometallics, 1998, 17, 3138 Search PubMed; S. Lee, I. Ichinose and T. Kunitake, Langmuir, 1998, 14, 2857 CrossRef CAS.
  2. E. Gallo and S. Gellman, J. Am. Chem. Soc., 1993, 115, 9774 CrossRef CAS; S. Zimmerman and T. Murray, Tetrahedron Lett., 1994, 4077 CrossRef CAS; J. Nowick, J. Chen and G. Noronha, J. Am. Chem. Soc., 1993, 115, 7636 CrossRef CAS; G. Das and A. Hamilton, J. Am. Chem. Soc., 1994, 116, 11 139 CrossRef CAS.
  3. For dendritic systems that combine isolation and recoguition. see C. Gorman, B. Parkhurst, W. Y. Su and K.-Y. Chen, J. Am. Chem. Soc., 1997, 119, 1141 Search PubMed; S. Zimmerman, Y. Wang, P. Bharathi and J. Moore, J. Am. Chem. Soc., 1998, 120, 2172 CrossRef CAS.
  4. K. Balkus, L. Ball, B. Gnade and J. Anthony, Chem. Mater., 1997, 9, 380 CrossRef CAS; Y. Xu and C. Langford, J. Phys. Chem. B, 1997, 101, 3115 CrossRef CAS; K. Yoon, Y. Park and J. Kochi, J. Am. Chem. Soc., 1996, 118, 12 710 CrossRef CAS; S. Vasenkov and H. Frei, J. Am. Chem. Soc., 1998, 120, 4031 CrossRef CAS For a recent review see: R. J. Gorte, Recent Advances and New Horizons in Zeolite Science and Technology. Studies in Surface Science and Catalysis, No. 102, ed. H. Chon, S. Woo and S.-E. Park, Elsevier, Amsterdam, 1996 Search PubMed.
  5. D. Avnir, D. Levy and R. Reisfeld, J. Phys. Chem., 1984, 88, 5956 CrossRef CAS; U. Narang, J. D. Jordan, F. V. Bright and P. N. Prasad, J. Phys. Chem., 1994, 98, 8101 CrossRef CAS; F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker and A. J. Hurd, J. Am. Ceram. Soc., 1995, 78, 1640 CAS; L. M. Ilharco, A. M. Santos, M. J. Silva and J. M. G. Martinho, Langmuir, 1995, 11, 2419 CrossRef CAS; K. Y. Parish, D. Habibi and V. Mohammadi, J. Organomet. Chem., 1989, 369, 17 CrossRef CAS; A. Slama-Schwok, D. Avnir and M. Ottolenghi, J. Am. Chem. Soc., 1991, 113, 3984 CrossRef CAS; A. Rosenfeld, D. Avnir and J. Blum, J. Chem. Soc., Chem. Commun., 1993, 583 RSC For recent reviews, see D. Avnir, Acc. Chem. Res., 1995, 28, 328 Search PubMed; B. Dunn and J. I. Zink, Chem. Mater., 1997, 9, 2280 CrossRef CAS.
  6. For other studies of encapsulated biomolecules, see: L. Ellerby, C. Nishida, F. Nishida, S. Yamanaka, B. Dunn, J. Valentine and J. I. Zink, Science, 1992, 255, 1113 Search PubMed; S. Braun, S. Shtelzer, S. Rappoport, D. Avnir and M. Ottolenghi, J. Non-Cryst. Solids, 1992, 147 and 148, 739 CrossRef CAS; I. Pankratov and O. Lev, J. Electroanal. Chem., 1995, 393, 35.
  7. For a detailed review of the fundamentals of sol-gel technology see: C. J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press, San Diego, 1990 Search PubMed; L. Hench and J. West, Chem. Rev., 1990, 90, 33 Search PubMed; A. M. Buckley and M. Greenblatt, J. Chem. Educ., 1994, 71, 599 CrossRef CAS.
  8. E. Breinlinger, A. Niemz and V. Rotello, J. Am. Chem. Soc., 1995, 117, 5379 CrossRef CAS.
  9. B. Stockman, T. Richardson and R. Swenson, Biochemistry, 1994, 33, 15 298 CrossRef CAS.
  10. E. Breinlinger and V. Rotello, J. Am. Chem. Soc., 1997, 119, 1165 CrossRef CAS.
  11. W. Watt, A. Tulinsky, R. P. Swenson and K. D. Watenpaugh, J. Mol. Biol., 1991, 218, 195 CAS.
  12. Synthesized in 75% yield from 2-aminoanthracene and 3-(triethoxysilyl) propyl isocyanate.
  13. N-Alkylurea analogs of 2 shows essentially identical quenching behavior as for 2, demonstrating that hydrogen bonding to the urea is not involved in flavin recognition.
  14. Solution studies have shown that additional anthracene–flavin interactions have little effect on flavin fluorescence, allowing selective monitoring of the 1 : 1 complex. The large excesses of receptor 2 used should minimize the effect of 2 : 1 receptor flavin binding on the receptor available for the first binding event.
  15. The uncertainty presented is the asymptotic standard error. As this system is not in the standard state, the calculated Ka value is for comparison purpose only.
  16. N10-Isobutylflavin 3 was used for these studies due to the low solubility of 1 in EtOH.
  17. M. Greaves and V. Rotello, J. Am. Chem. Soc., 1997, 119, 10 569 CrossRef CAS.
  18. At the concentrations of flavin 1 used in these sol-gel experiments, there is no deviation from ideal fluorescence dependence on concentration. This indicates that there are no flavin–flavin interactions occurring, demonstrating site isolation of the flavin species.
Click here to see how this site uses Cookies. View our privacy policy here.