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Polymeric membranes are being studied for their potential use in post-combustion carbon capture
on the premise that they could dramatically lower costs relative to mature technologies available
today. Mixed matrix membranes (MMMs) are advanced materials formed by combining polymers
with inorganic particles. Using metal-organic frameworks (MOFs) as the inorganic particles has
been shown to improve selectivity and permeability over pure polymers. We have carried out
high-throughput atomistic simulations on 112,888 real and hypothetical metal-organic framework
structures in order to calculate their CO2 permeabilities and CO2/N2 selectivities. The CO2/H2O
sorption selectivity of 2,017 real MOFs was evaluated using the H2O sorption data of Li et al.1

Using experimentally measured polymer properties and the Maxwell model, we predicted the
properties of all of the hypothetical mixed matrix membranes that could be made by combining
the metal-organic frameworks with each of nine polymers, resulting in over one million possible
MMMs. The predicted gas permeation of MMMs was compared to published gas permeation data
in order to validate the methodology. We then carried out twelve individually optimized techno-
economic evaluations of a three-stage membrane-based capture process. For each evaluation,
capture process variables such as flow rate, capture fraction, pressure and temperature conditions
were optimized and the resultant cost data were interpolated in order to assign cost based on
membrane selectivity and permeability. This work makes a connection from atomistic simulation
all the way to techno-economic evaluation for a membrane-based carbon capture process. We
find that a large number of possible mixed matrix membranes are predicted to yield a cost of
carbon capture less than $50 per tonne CO2 removed, and a significant number of MOFs so
identified have favorable CO2/H2O sorption selectivity.
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Broader context
Emissions of CO2 from coal power plants are a major contributor to the rise in greenhouse gases and, consequently, climate change. As
part of a broader strategy to reduce greenhouse gas emissions, significant effort has been made to develop efficient CO2 capture and
storage technologies. These technologies can potentially be retrofitted onto existing coal power plants, where a portion of the produced
power is diverted to operate the CO2 capture process. However, many CO2 capture technologies are cost prohibitive to operate because
too much power would need to be diverted instead of sold to customers. Membranes that separate CO2 from the other components
of the gaseous exhaust stream have great potential as energy-efficient and low-cost solutions to this urgent problem. In particular,
mixed matrix membranes, which are polymers containing well-dispersed small inorganic particles, offer the potential for much better
performance than ordinary (i.e., pure polymer) membranes. There are many possible polymers, and many possible inorganic particles,
from which to construct mixed matrix membranes, and it can be a challenge to find the optimal combination. In this work, we use
computational modeling to rapidly screen mixed matrix membranes in order to estimate both their CO2 capture performance and
the resulting cost of carbon capture. A key finding of this work is the identification of a large number of hypothetical mixed matrix
membranes that are predicted to yield a cost of carbon capture of less than $50 per tonne of CO2 removed.

1 Introduction

Anthropogenic emissions of CO2 are key contributors to global
climate change, and coal-fired power plants represent a large pro-
portion of overall world-wide CO2 emissions.2 Researchers have
long sought an economically viable method to separate and se-
quester the CO2 generated by power production from coal, in-
stead of releasing it into the atmosphere. The separation process
differs depending on whether one considers post-combustion cap-
ture from flue gas or pre-combustion capture from gasified coal
synthesis gas. Most of the energy produced from coal world-wide
is currently generated in pulverized coal plants, where coal and
air are combusted in a boiler.2 A retrofitted carbon capture pro-
cess for such a plant would be called a post-combustion process.
Post-combustion separation is particularly challenging because
CO2 is at a low concentration (∼ 13%) in the flue gas. While fu-
ture power plants might benefit from pre-combustion carbon cap-
ture technologies, existing coal power plants will need retofitted
post-combustion technologies in order to significantly reduce car-
bon emissions.
CO2 capture using amine solvents is a mature technology used
for CO2 separations in certain industrial processes,3 but there are
significant drawbacks to its application to post-combustion car-
bon capture. Techno-economic estimates for amine-based solvent
processes show that such systems would be quite costly as well
as face scale-up challenges.4 A typical 600 MWe power plant can
produce 500 m3 of flue gas every second. Amine-based processes
currently used for carbon dioxide separations in the natural gas
and chemical industries treat gas streams that are five to ten times
smaller.5 For the case of post-combustion capture, emerging tech-
nologies such as cryogenic separation, precipitating solvents, sor-
bents, or membranes could prove to be far more effective and
economical in the long run.6
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Gas separations using polymer membranes are attracting interest
for post-combustion carbon capture due to their low energy re-
quirements, ease of fabrication, and excellent mechanical proper-
ties. Pure polymers, however, exhibit a tradeoff between selectiv-
ity and permeability, as was demonstrated by Robeson.7,8 Known
polymer membranes are either highly selective or highly perme-
able. The tradeoff between selectivity and permeability that has
been identified for pure polymers is often referred to as the Robe-
son bound.
Mixed matrix membranes (MMM) are polymer membranes with
inorganic nanoparticles dispersed in the polymer matrix. The
polymer matrix contributes mechanical strength and ease of fab-
rication while the incorporation of certain inorganic particles can
improve separation and permeation properties. Materials such as
zeolites,9 silica,10, carbon molecular sieves11 and metal-organic
frameworks12,13 have been incorporated into MMMs. Metal-
organic frameworks (MOFs) are highly porous crystalline mate-
rials created via the self-assembly of inorganic metal or metal ox-
ide subunits with organic linkers.14–16 MOFs can be made from
an enormous number of possible building blocks, leading to a
material class encompassing a wide variety of properties.17–19

The incorporation of certain CO2/N2 selective and highly perme-
able MOFs into polymers has been shown to increase selectiv-
ity and permeability of the MMM, with respect to the neat poly-
mer,12,20,21 although not all MOF-polymer pairings result in an
improvement over the parent polymer. In this work, we have
used computational methods to screen a large number of MOFs
and predict the properties of possible MMMs. These computa-
tional methods have been pioneered by others,23,30,32,33 but we
have proceeded a step further by pushing our predictions into the
process optimization and cost evaluation realms.
Due to the large number and variety of MOF structures and the
difficulty involved in measuring gas permeation through MOFs,
it is difficult to predict a priori which MOF should be paired
with which polymer in order to produce a high-performing MMM.
There are thousands of synthesized MOFs,22 and an almost infi-
nite number of possible MOFs that could be synthesized in the
future.23,24 There are on the order of a hundred polymers that
have been used for separation membranes and by blending poly-
mers together, an even larger number of polymer materials may
be created. It would be an impossible feat to synthesize and ex-
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perimentally test all the possible MMMs that could be created
from this array of materials. Therefore, a high-throughput screen-
ing of computed MMM properties will be extremely useful in or-
der to identify the relationship between the MOF properties, the
polymer properties and the properties of the MMM. In this study,
we have used computational methods to predict the gas perme-
ability and selectivity of 112,888 MOFs, combined those data
with experimentally-measured properties of nine polymers and,
making use of the Maxwell model,25 predicted the gas separa-
tion properties of over a million MMMs. Similar computational
screening projects have been carried out previously, not only on
MOFs,1,23,24,26–29 but also on MMMs.30–33 While computational
screening projects have already yielded useful results, the ques-
tion of how MOFs in MMMs will be affected by water remains an
outstanding issue. In addition to CO2 and N2 sorption data, we
made use of results obtained by Li et al.1 for H2O sorption in real
MOFs (2,017) to judge whether MOFs in MMMs are CO2/H2O
sorption selective or not. By separating a large group of MOFs
into those that either are, or are not, CO2/H2O sorption selective,
we have been able to show that there are a significant number of
MOFs that show favorable CO2/N2 separation properties and are
not sorption selective for water.
However, a further goal of our work is to understand how the
properties of MMMs influences the cost of carbon capture. Typ-
ically, in order to do a techno-economic evaluation of a carbon
capture process, the properties of the separation membrane are
known and a capture process is designed to minimize the an-
nualized cost. The design of a capture process includes process
configuration as well as process variables. Both the process con-
figuration and the variables in the carbon capture process (tem-
perature, pressures, flow rates, the area of the membranes, etc.)
may be optimized based on the properties of a material.34 In this
work, we have adopted a three-stage process configuration that
has been demonstrated to be well-suited for membrane-based
post-combustion carbon capture.35 We have optimized the de-
sign and operating conditions for this process for twelve distinct
selectivity-permeance conditions. By carrying out a linear inter-
polation over the selectivity and permeance ranges of interest,
we created an estimate of the cost of carbon capture (CCC) as
a function of membrane selectivity and permeance properties for
the range of interest. We have used this relationship in order to
create a database of over a million possible MMMs, each with an
associated estimate for its CCC.

2 Computational methodology

2.1 Materials studied

We studied hypothetical MOFs from the database created by
Wilmer et al.23, and real MOFs included in the computational
ready experimental (CoRE) MOF database created by Chung et
al.36 The hypothetical database contains 137,953 MOF struc-
tures systematically created by re-connecting a library of building
blocks (gleaned from known MOFs). The CoRE database includes
a collection of structurally and chemically diverse real MOFs that
have been synthesized and experimentally characterized; during
creation of the CoRE database the experimentally-obtained

structure files were altered in order to remove solvent molecules,
resolve partial occupancies and remove disorder. Out of the 4764
structures in the CoRE database, we chose to focus on MOFs
that would be characterized effectively using the automated
methods and the EQeq partial charge assignment methodology
applied in this project.37 Thus we focused on MOFs with metal
oxide subunits (as opposed to metal-metal bonds or uncommon
oxidation states). We removed from our study group any MOFs
with pore diameters less than 2 Å. We further excluded certain
MOF structures from both the hypothetical and CoRE databases
for which our simulations provided insufficiently reliable data
(details are provided in the supplementary information). After
excluding MOF structures as detailed above, our study group
included >110,000 hypothetical and >2,000 CoRE MOFs.
In order to predict the properties of MMMs, we combined our
computational results for MOFs with experimental data from
nine polymer materials: poly[1-(trimethylsilyl)-1-propyne]
(PTMSP),38 poly[1-(trimethylgermyl)-1-propynel] (PTMGP),38

polymers of intrinsic microporosity-1 (PIM-1),39 polydimethyl-
siloxane (PDMS),40 2,6-diisopropylphenyl amino-hydroxy
functionalized polydimethylsiloxane (modified PDMS),41

polymers of intrinsic microporosity-7 (PIM-7),42 2,2'-bis(3,4'-
dicarboxyphenyl) hexafluoropropane dianhydride- 2,3,5,6-
tetramethyl-1,4-phenylenediamine (6FDA-durene),43 poly[bis(2-
(2-methoxyethoxy)ethoxy)]polyphosphazene (MEEP),44 and
5(6) -1-(4'aminophenyl)-1,3,-trimethylindane (Matrimid-
5218).12 This group of polymers spans a wide range of CO2

permeability and intentionally includes many of the polymers
that have been previously used in the formulation of MMMs.

2.2 Structural characterization

Using the freely-available Zeo++ software,45 we have calculated
the pore limiting diameter (PLD), largest cavity diameter (LCD)
and the dimensionality of the pores for each MOF. The PLD is the
diameter of the largest sphere that can move through the struc-
ture without overlapping framework atoms and the LCD is de-
fined as the diameter of the largest sphere that could be inserted
into a cavity in the structure.26

2.3 Force field

An all-atom pairwise force field of the following functional form
was used to describe the interactions between all the atoms in the
system:

Vtot =
N−1

∑
i=1

N

∑
i< j

{
4εi j

[(
σi j

ri j

)12

−

(
σi j

ri j

)6]
+

qiq j

4πε0ri j

}
(1)

where εi j and σi j are the well depth and collision diameters, ri j is
distance between the atoms i and j, qi is the atomic charge of atom
i, and ε0 = 8.8542 × 10−12 C2 N−1 m−2 is the permittivity of vac-
uum. Metal-organic framework atoms were held rigid. The atoms
in the MOFs were described using Lennard Jones parameters from
the universal force field (UFF)46 and the partial charges were de-
rived via the extended charge equilibration method (EQeq) devel-
oped by Wilmer and Snurr.37 The TraPPE47 force field was used
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for CO2 and N2. The Lorentz Berthelot combining rules were used
to calculate the Lennard Jones parameters for unlike atom pairs.

2.4 Widom particle insertion and molecular dynamics simu-
lations

We performed atomistic simulations to characterize gas sorption
and permeability in the MOFs. Because we have largely adopted
the methodology of a number of previous works,26,30,31 a de-
tailed description has been placed in the supporting information
and only a brief overview is presented here. We used the Widom
particle insertion method,48 as implemented in the RASPA49 code
in order to calculate the Henry’s law constants (gas adsorption
at low partial pressure) of CO2 and N2 of each MOF at 298 K.
Henry’s constants are frequently used in the literature to approx-
imate gas adsorption at low partial pressures, where the approx-
imation becomes exact only at infinite dilution. At higher pres-
sures, using Henry’s constants can lead to significant over predic-
tion of adsorption. Furthermore, in large-scale screening studies
that utilize method like Widom insertion, there is a significant
chance that a small number of materials will be poorly sampled
and for which calculated Henry’s constants may be artificially
high for statistical reasons. The self-diffusivities of CO2 and N2

in each MOF were computed using the molecular dynamics code
LAMMPS50 at 298 K. In order to account for the effect of water
on gas permeability in MOFs, we have used the calculated H2O
adsorption data from Li et al.1 to compute the CO2/H2O sorp-
tion selectivity for a majority of the MOFs in the CoRE database.
MOFs in the CoRE database are categorized as CO2/H2O sorption
selective or vice versa based on this result. The gas separation
performance of porous materials may be described via a solution-
diffusion mechanism in which the permeability of species i, Pi,
is the product of the solubility, Si, and the diffusivity, Di. The
perm-selectivity for species i over species j (αP

i/ j), is thus:

α
p
i/ j =

Pi

Pj
= α

S
i/ j ×α

D
i/ j (2)

where the superscripts D and S denote diffusion and solubility,
respectively. We made use of this relation in order to calculate
the CO2/N2 selectivity for each MOF or MMM.

2.5 Mixed matrix membranes
The selectivity and permeability of a membrane can be improved
or degraded by the incorporation of porous filler materials. The
Maxwell-Wagner-Sillars equation was derived in order to predict
the dielectric behavior of composite materials, and the analogy
between dielectrics and the permeation of gases through compos-
ite membrane materials was described by Bouma et al.51 With
the assumption that the filler particles are spherical, the Maxwell-
Wagner-Sillars equation simplifies to Eq. 3 and the model is com-
monly referred to as the “Maxwell model”.

PMMM = Ppoly
PMOF (1+2φMOF )+Ppoly(2−2φMOF )

PMOF (1−φMOF )+Ppoly(2+φMOF )
(3)

where PMMM is the effective permeability of the composite MMM
material, Ppoly is the permeability of the neat polymer, and PMOF

is the permeability of the MOF filler particles, respectively. φMOF

is the volume fraction of the MOF filler particles, for which we
have assumed a value of 0.30 (which is in line with the vol-
ume fractions adopted in MMM materials that have been synthe-
sized). The Maxwell model assumes that the flux of gas around
and through the MOF particles is not influenced by neighboring
particles. This assumption limits the applicability of the Maxwell
model to volume fractions of 0.30 or less. Despite these simpli-
fying assumptions, this model has been shown to be quite suc-
cessful in a number of previously published works.31,32,52–55 We
compare the predictions made in this work with published mea-
surements of CO2 and N2 permeation in MMMs (Figure 4), and
we find that our predictions are in overall good agreement with
the experiments.
We use our calculated data on gas permeation through the MOFs,
and we make use of experimentally determined data (presented
in the supporting information) for the neat polymer membranes.
Thus, we are able to make predictions of gas permeability for one
hypothetical MMM for each combination of the 112,888 MOFs
and 9 polymers included in our study, yielding predictions for
over one million MMMs. By predicting both the CO2 and the N2

permeability, we are able to calculate the ideal CO2/N2 selectiv-
ity using Eq. 2. In order to bridge the gap from the material to
the process, we assume that each MMM may be incorporated as
a one micron thick selective layer on a porous support as part of
a gas separation membrane module, yielding a predicted perme-
ance for each MMM.

2.6 Process modelling

We have used a process model in order to link our results from
atomistic simulations to estimates for the cost of carbon cap-
ture.56,57 The goal of our techno-economic calculations is to un-
derstand how membrane-based post-combustion carbon capture
process costs are related to the properties of the membrane. The
calculations are based on capturing 90% of the CO2 from a 650
MWe supercritical pulverized coal power plant. In this work,
we have assumed a price of $50/m2 for the cost of the separa-
tion membrane modules, in line with numerous previous stud-
ies.58–61 Module fabrication costs will include raw material cost,
support and dense layer fabrication, and module fabrication com-
plete with fittings. The cost of material, therefore, is to some ex-
tent dwarfed by the manufacturing costs. As with any new tech-
nology, the cost of a material will decrease sharply over time if
there is robust demand. This has been observed in the market
as MOF materials have made their way into products.62 The op-
timizations were performed within the Framework for Optimiza-
tion, Quantification of Uncertainty and Sensitivity (FOQUS), uti-
lizing Aspen Custom Modeler to simulate the membrane-based
carbon capture process and a spreadsheet for calculating the cap-
ital and operating costs to enable estimation of the cost of elec-
tricity. For a post-combustion carbon capture technology, the flue
gas has been subjected to pre-treatment to reduce SOx and NOx

prior to entering the membrane carbon capture unit. The cost of
SOx and NOx removal makes up part of the total overnight cost
of the power plant and was thus included in the costing formula.
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We assumed a three-stage process configuration with sweep that
is a variant of a design published by Merkel et al.5 The configu-
ration introduced by Merkel et al. includes a sweep gas stream
to recycle CO2-rich permeate to the boiler, to increase the driv-
ing forces across the membrane. Within the NETL variant, the
retentate stream from the third stage is redirected into the sec-
ond stage to avoid dilution of the stream entering the first stage.
Our goal was to estimate a cost for carbon capture for any of
the hypothetical membranes in our large data set. Usually, one
would design an entire carbon capture process based on the spe-
cific properties of a given membrane, optimizing everything about
the process in order to determine the lowest cost for a process de-
signed for that membrane. In this work, however, we created an
optimized process for twelve hypothetical membranes character-
ized by their selectivity and permeance. The chosen three-stage
process configuration was not varied. The twelve hypothetical
membranes were characterized by CO2 permeance equal to 34,
1170 or 8000 GPU and CO2/N2 selectivity of 18, 35, 68 or 250.
For each permeance-selectivity pair, membrane area, pressures,
temperatures and flowrates were optimized in order to minimize
the cost of electricity. Using those data, a linear interpolation was
applied in order to create a relationship between the cost of car-
bon capture and the permeance (PCO2 ) and selectivity (αP

CO2/N2
)

of the membrane (Eq. 4)

CCC
(

$
tonne CO2 removed

)
= f
(

PCO2 ,α
P
CO2/N2

)
(4)

Ultimately, we have assigned a predicted CCC to each hypotheti-
cal MMM in our database based on the selectivity and permeance
of the MMM. Further details of the process modelling may be
found in the supplementary information.

3 Results and discussion

3.1 Gas adsorption in metal-organic frameworks

The calculated Henry’s constants for CO2 and N2 as a function of
LCD are shown in Figure 1. Results are shown for MOFs from the
hypothetical database as well as from the CoRE database. Several
well-known MOFs are highlighted for comparison. The Henry’s
constants of CO2 are typically an order of magnitude larger than
those of N2, as would be expected due to the stronger electro-
static forces that dominate the CO2-MOF atom interactions. The
Henry’s constants for both gases show a peak near LCD 4-6 Å,
indicating that pores in that size range accommodate the gas
molecules in regions of space where favorable interactions with
framework atoms are most likely.
The CO2/N2 ideal adsorption selectivities for the MOFs were com-
puted from the ratio of their corresponding Henry’s constants and
are presented as a function of LCD in Figure 1c. It can be seen
that adsorption selectivity is greater than one for all the MOFs,
due to the fact that the CO2-MOF interaction benefits from a
larger electrostatic interaction than the N2-MOF interaction. It
is also observed that the MOFs with the largest adsorption se-
lectivity are those with LCD ∼ 4-6 Å. Out of the six well-known
MOFs highlighted, SIFSIXCu2i has the largest adsorption selectiv-
ity (αS

CO2/N2
) of 271.

3.2 Diffusion of CO2 and N2 in metal-organic frameworks

The self-diffusion coefficients of CO2 and N2 in MOF materials
were computed from molecular dynamics trajectories and, in gen-
eral, the self-diffusivities tend to increase with pore size. (Details
are presented in the supporting information.) The LCD/PLD ratio
is an indication of the morphology of a MOF; a ratio of 1 indicates
the cavities in the MOF are similar in size to the channels, while
a ratio greater than one indicates that the MOF has large cavities
connected by narrow channels.63 We examined the relationship
between self-diffusivity of gases in MOFs and the LCD/PLD ratio,
and the results are presented in Figure 2. MOF morphology has
a strong effect on diffusivity. Diffusion for both gases is enhanced
when the LCD/PLD ratio is between 1 and 2, indicating that gas
diffusivity is enhanced when the cavities are similar in size to the
channels. MOFs with large LCD/PLD ratios (that contain rela-
tively large cavities connected by narrow channels) allow for lim-
ited gas diffusivity, indicating that gas molecules spend a lot of
time in large cavities and may have difficulty escaping through
narrow channels. In Figure 2 (c), we present CO2/N2 diffusion
selectivity as a function of PLD. It can be seen that many of the
MOFs that have PLD < 5 Å show high diffusion selectivity. Con-
versely, MOFs with large PLD do not tend to show high CO2/N2

selectivity. In general, when the PLD is large, diffusion of gases
is less influenced by the chemical environment of the pore walls
and selectivity is lost. ∼ 70% of the hypothetical MOFs and ∼
50% of the CoRE MOFs have CO2/N2 diffusion selectivity less
than one; e.g. they are selective for N2 rather than CO2. This
includes also the popular MOFs Cu-BTC, IRMOF-1 and IRMOF-
3. This may be attributed to the stronger MOF-CO2 interaction
and greater molar mass of CO2 compared to N2. In Figure 3, we
present the CO2/N2 selectivity as a function of CO2 permeability
for the MOFs we have studied. These results, in agreement with
previous studies,28,31,32 confirm that there are a large number of
MOF materials that greatly exceed the Robeson bound.

3.3 Mixed matrix membranes

We predicted the properties of composite membranes using com-
puted data for CO2 and N2 permeabilities in the MOFs and ex-
perimentally measured gas permeabilities in nine polymers. The
permeability of the gases in the composite material was computed
by means of the Maxwell model. In order to assess the reliability
of this method, we have compared our predictions with experi-
mental measurements for a series of MMMs (Figure 4).13,64–70 It
can be seen that our predictions for CO2 and N2 permeability are
reasonably close to the measured values.
In Figure 5, we present the calculated selectivity and CO2 perme-

ability for the MMMs. For each polymer, the properties of the neat
polymer membrane are marked with a square and the predicted
properties for MMMs derived from that polymer are marked with
smaller symbols in the same color. Based on these results, the
incorporation of MOFs into polymer membranes can either im-
prove or degrade performance. It can be seen that for both the
CoRE and hypothetical databases, there are a large number of
MOFs which, in combination with highly permeable polymers,
could lead to the creation of MMMs that greatly exceed the Robe-
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Fig. 1 Calculated Henry’s constants for CO2 (a), N2 (b) and ideal CO2/N2 selectivity (c) as a function of largest cavity diameter (LCD) in metal-organic
frameworks. Hypothetical MOFs are indicated with purple dots and MOFs from CoRE database are idicated with red dots.

Fig. 2 Self-diffusion coefficients of CO2 (a) and N2 (b) in MOFs as a function of pore morphology (LCD/PLD) and CO2/N2 Diffusion selectivity (c) as a
function of Pore Limiting Diameter (PLD) at 298 K. Diffusion for CO2 and N2 have been cut off at 20 (10−8m2/s) and 50 (10−8m2/s) for clarity.

Fig. 3 CO2/N2 selectivity as a function of CO2 permeability for hypothet-
ical and CoRE MOFs. The black diagonal line indicates the Robeson
upper bound.

son bound. The largest impacts are seen for the most highly per-
meable polymers. It is observed that MMMs made with low per-
meability polymers such as Matrimid are unlikely to exceed the
Robeson bound.
The influence of MOF permeability on MMM permeability is ex-
amined in Figure 6. In this figure, the CO2 permeability of the
MMM is plotted as a function of the ratio of the MOF permeability
over the neat polymer permeability. When the MOF permeability
is less than the neat polymer permeability, the MMM permeabil-

Fig. 4 Predicted versus measured CO2 and N2 permeabilities of mixed
matrix membranes using Maxwell model with the experimental values.
Blue color represents CO2 permeability and green color represents N2
permeability. The red diagonal line indicates calculated permeability =
experimental permeability.

ity is less than that of the neat polymer. When the MOF perme-
ability is greater than that of the neat polymer, we see that the
MMM permeability improves. However as the ratio continues to
increase, the MMM CO2 permeability levels off and no longer in-
creases. This leveling off is complete by the time the MOF perme-
ability is approximately 10 times that of the polymer. It has been
previously noted that predictions based on the Maxwell model
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Fig. 5 Selectivity as a function of CO2 permeability for MMMs based on a) the CoRE database of Chung et al. 36 and b) the hypothetical MOF database
of Wilmer et al. 23 The diagonal line is the Robeson bound. The square symbols mark the selectivity and permeability of the neat polymers and the
small round symbols mark the predicted selectivity and permeability of the MMMs based on each of the nine polymers.

show that MMMs may be improved by the incorporation of highly
porous MOF filler particles up to a point,51 after which there is
no further improvement. From the Maxwell model, one can com-
pute the maximum and minimum theoretically achievable limits
to the MMM permeability, which are 2.285 and 0.608 times that
of the polymer, respectively. This underscores the importance of
choosing a highly permeable polymer to start with. To achieve
a MMM with the highest possible CO2 permeability, one should
begin with a polymer with the highest possible permeability and
pick a MOF with permeability that is at least 10 times that of the
neat polymer.
We also can explore how the relationship between MOF and poly-
mer selectivity influences the MMM selectivity. This relationship
is presented in Figure 7 for four fixed ratios of MOF/polymer per-
meability: 1, 10, 100 and 10,000. When the MOF selectivity is
less than that of the polymer, the MMM selectivity is poor. As
the MOF selectivity is increased relative to that of the polymer,
the MMM selectivity increases as well, before eventually leveling
off. The MMM in which the MOF/polymer permeability ratio is
1 does not reach a high selectivity. The MMMs for which the ra-
tios are greater than 10 both reach the same maximum selectivity,
but the MMM for which the ratio is 100 hits the maximum selec-
tivity sooner. In the case where the MOF/polymer permeability
ratio is 100, the maximum MMM selectivity is reached when the
MOF selectivity is about 1000 times that of the polymer selectivity.
Therefore, to achieve the highest selectivity and permeability in a
MMM, which should begin with a polymer with high permeabil-
ity, pair it with a MOF with at least 100 times more permeability

and 1000 times higher selectivity.

Fig. 6 MMM CO2 permeabilty as a function of the ratio of the MOF
permeability over the polymer permeability. Square symbols are CO2
permeability values of pure polymers.

3.4 Cost of carbon capture
In Figure 8, we present results for the cost of carbon capture for
MMMs that could be made from the hypothetical MOF database
and PIM-1. The permeability and selectivity of the neat mem-
brane is labelled with a dark diamond. MOFs with permeability
or selectivity lower than that of the neat membrane are predicted
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Fig. 7 Relationship between gas selectivity of mixed membranes and
the ratio of gas permeability and gas selectivity of MOF to polymer. This
figure is based on the PIM-1 which has a selectivity of 19.3. The colored
dashed lines show the regions where MMM selectivity is increased for
each given ratio of MOF to polymer permeability. It is observed that for a
given MOF to polymer permeability ratio, MMM selectivity starts increas-
ing once the MOF to polymer selectivity ratio approaches 0.1*PMOF /Ppoly
and levels off around 10*PMOF /Ppoly.

to lead to MMMs with high CCC. In fact, the pure polymer outper-
forms a significant number of possible MMMs, underscoring the
importance of pairing a polymer with a MOF that has the right
properties in order to get an MMM with superior qualities. It can
be seen that MOFs leading to membranes predicted to have the
best CCC have CO2 permeability about 100 times that of the poly-
mer and CO2/N2 selectivity roughly 1000 times larger than those
of the neat polymer. This is consistent with the results presented
in the previous section. It is interesting that the lowest CCC is
not yielded by the “best” MOF, e.g. the MOF with the highest
permeability or the selectivity. In fact what is revealed is that the
relationship between the polymer and the MOF is more impor-
tant than the properties of the MOF alone. As shown in Figure 7,
MOF/polymer selectivity ratio should not be less than one order
of magnitude than MOF/polymer pemeability ratio in order for
resulting MMM to show enhanced gas selectivity. Therefore, the
lowest CCC is not shown by MOFs with the largest permeability
and selectivity, but by those MOFs for which the MOF/polymer se-
lectivity ratio is at least 10 times greater than the MOF/polymer
permeability ratio, given the MOFs have larger permeability and
selectivity compared to the polymer. These results highlight the
importance placed on the choice of MOF when creating a MMM.
While it is possible to improve the polymer properties by the in-
corporation of MOFs as filler particles, the choice of the wrong
MOF can lead to a suboptimal result. In Figure 9a, we present re-
sults for MMMs based on CO2/H2O sorption selective MOFs from
the CoRE MOF database and PIM-1. In Figure 9b, we present
similar results for the H2O/CO2 sorption selective MOFs from the
CoRE MOF database and PIM-1. Out of 2017 CoRE MOFs, the
majority (1121) are CO2/H2O sorption selective and the minority
(896) are selectively adsorbing H2O over CO2.
The CO2/N2 selectivity of the MMM is plotted as a function of CO2

permeance, and the color of the background indicates the pre-

Fig. 8 Selectivity as a function of CO2 permeability for the hypothetical
MOF database. Color denotes the predicted CCC for MMM generated
with the MOF and PIM-1.

dicted CCC. The performance of neat PIM-1 membrane is marked
with a diamond, and is predicted to give a CCC of $64 per tonne
CO2 removed.
In total, our predictions include 1,153 hypothetical MMMs with
predicted CCC less than $50 per tonne CO2 removed. These
membranes are based on modified PDMS (7), PDMS (1), PIM-1
(448), PTMGP (504) and PTMSP (193). Sixteen of these possi-
ble MMMs are notable because they are based on MOFs from the
CoRE database with favorable CO2/H2O sorption selectivities. In
these MOFs, the Henry’s coefficient for CO2 is 5 to 33 times larger
than the Henry’s coefficient for H2O, giving some indication that
these possible membranes could be robust in performance in a
humid gas stream. Seven of these membranes are based on PIM-
1 and are predicted to have CO2 permeabilities of 7,000 to 11,600
Barrer and selectivities of 38-61. Membranes with properties in
this range have not been previously reported. It is clear that the
creation of MMMs with properties as described above would rep-
resent a major step forward in terms of materials discovery for
membrane-based carbon capture processes.

4 Conclusions
In this work, we used simulations to predict the properties of a
large number of hypothetical and existing MOFs. By means of the
Maxwell model and the use of experimental data for nine poly-
mers, we predicted the properties of ∼1 million MMMs. Techno-
economic evaluations of an optimized membrane-based capture
process allowed us to develop a predicted CCC as a function of
membrane CO2 permeability and CO2/N2 permselectivity. Cap-
ture process variables such as flow rate, capture fraction, pres-
sure and temperature conditions were optimized as a function of
membrane properties. We have created a database of ∼ 1 million
hypothetical MMMs, each with a predicted cost of carbon capture.
This work represents a novel connection between atomistic MOF
structure and cost of carbon capture. Our calculations show that
MOFs with LCD in the range of 4-10 Å and PLD in the range of 4-5
Å have superior adsorption and diffusion selectivity, respectively.
In order to create a MMM with properties that greatly exceed
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Fig. 9 (a) Performance of MMMs formed from CO2/H2O sorption selective
CoRE MOFs and PIM-1. (b) Performance of MMMs formed from H2O/CO2
sorption selective CoRE MOFs and PIM-1. The performance of a mem-
brane composed of neat PIM-1 ($64 per tonne CO2 removed) is indicated
by the location of the blue diamond. The Robeson upper bound is indicated
by the a black line.

those of the parent polymer, the chosen MOF should have per-
meability roughly 100 times and selectivity roughly 1000 times
greater than the polymer. Through techno economic analyses of
∼ 1 million mixed matrix membranes, we found 1,153 MMMs
that yield a CCC less than $50 per tonne CO2 removed.
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